Читаем Отличная квантовая механика полностью

Проведя аналогичные рассуждения для |c⟩ = |a⟩ +i|b⟩, получим Im⟨a'|b'⟩ = Im⟨a|b⟩.


Решение для упражнения A.81

a) Поскольку унитарный оператор сохраняет скалярные произведения, он отображает ортонормальный базис на ортонормальное множество. Согласно упр. A.19, такое множество образует базис.

b) Для любого кет-вектора имеем Соответственно,

Видим, что оператор Û сохраняет норму |a⟩ и, следовательно, унитарен.


Решение для упражнения A.82. Если оператор Û унитарен, то некоторый ортонормальный базис {|ωi⟩} он отображает на другой ортонормальный базис {|𝑣i⟩} (упр. A.81). Отсюда следует, что он может быть записан в виде (упр. A.25). Тогда (упр. A.35). Соответственно,

То, что доказывается аналогично.

Теперь докажем, что любой оператор Û, удовлетворяющий сохраняет скалярное произведение двух произвольных векторов |a⟩ и |b⟩. Определив |a'⟩ = Û|a⟩ и |b'⟩ = Û|b⟩, получаем

a'|b'⟩ = ⟨a|ÛÛ|b⟩ = ⟨a|b⟩.


Решение для упражнения A.83

a) Так как каждый унитарный оператор Û удовлетворяет утверждение из упр. A.63 выполняется, поэтому Û можно привести к диагональному виду. Для любого собственного значения u и соответствующего ему собственного вектора |u⟩ имеет место равенство |u'⟩ = Û|u⟩ = u|u⟩, а отсюда вытекает, что

u'|u'⟩ = u*uu|u⟩.

Поскольку унитарный оператор сохраняет норму, должно выполняться u*u = |u|2 = 1. Этому удовлетворяет любое u = e при θ ∈ ℝ.

b) Если оператор Û диагонализируем, его матрица в его собственном базисе имеет вид

где ui — собственные значения с абсолютным значением 1 (т. е. такие, что ui*ui = 1). Тогда сопряженная матрица такова:

а произведение этих матриц равно

Это показывает, что оператор Û унитарен.


Решение для упражнения A.84

a) Для операторов Паули:

Так что все три оператора Паули унитарны.

b) Для оператора поворота:

так что этот оператор тоже унитарен. Это можно понять интуитивно: при повороте векторов их длина (норма) не меняется.


Решение для упражнения A.85. Оператор 𝑓(Â), действующий на вектор |a⟩, дает

Поскольку Â эрмитов, его собственные векторы ортонормальны. Отсюда все ⟨ai|a⟩ = 0, за исключением ситуации, когда |ai⟩ = |a⟩; в этом случае скалярное произведение равно единице. Следовательно,

𝑓(Â)|a⟩ = 𝑓(a)|a⟩⟨a|a⟩ = (a)|a⟩.


Решение для упражнения A.86. Матрица операторной функции (A.49) в его собственном базисе диагональна с действительными значениями, т. е. является самосопряженной.


Решение для упражнения A.87. Для неотрицательной функции 𝑓(x) все собственные значения 𝑓(ai) функции оператора (A.49) неотрицательны; это означает, что оператор также неотрицателен, согласно упр. A.72.


Решение для упражнения A.88. Начнем с приведения Â к диагональному виду. Характеристическое уравнение для этой матрицы:

откуда находим собственные значения 𝑣1,2 = {4, –2}. Нормированный собственный вектор, связанный с первым собственным значением, таков:

Это означает, что наш оператор можно записать как

 = 4 |𝑣1⟩⟨𝑣1|–2 |𝑣2⟩⟨𝑣2|.

Теперь применим (A.49) и выразим как

где все матрицы построены в том же базисе, что и матрица Â.

Чтобы определить lnÂ, нам нужно найти логарифм его собственных значений, одно из которых — 𝑣2 — отрицательно. Логарифм отрицательных чисел не определен в пространстве действительных. В пространстве же комплексных чисел мы можем воспользоваться тем, что e(2m+1)iπ (где m — произвольное целое число) и, таким образом, e(2m+1)iπ+ln2 = (–1)×2 = –2. Отсюда следует, что ln(–2) = (2m + 1)iπ + ln2[151]. В итоге:


Решение для упражнения A.89. Собственные значения Â — это a1 = 0 и a2 = 1 с соответствующими собственными векторами и Поэтому


Решение для упражнения A.90. Матрицы Â и 𝑓(Â) в собственном базисе Â таковы:

(где ai — собственные значения), и поэтому

Отсюда [Â,𝑓(Â)] = Â𝑓(Â) — 𝑓(Â)Â = 0.


Решение для упражнения A.91


Решение для упражнения A.92. Любой эрмитов оператор может быть приведен к диагональному виду с действительными собственными значениями ai (см. упр. A.60):

Экспонента этого оператора

имеет те же собственные векторы, но ее собственные значения — Поскольку все ai действительны, все имеют абсолютные значения, равные единице, поэтому e унитарен, согласно упр. A.83.

В то же время так что


Решение для упражнения A.93. В каноническом базисе оператор характеризуется следующей матрицей:

Эта матрица эрмитова, следовательно (согласно упр. A.60), у оператора два собственных значения 𝑣1,2 и два соответствующих им ортогональных собственных вектора |𝑣1,2⟩. Собственные значения находятся путем решения характеристического уравнения:

Поскольку — вектор единичной длины, собственные значения равны 𝑣1,2 = ±1 и, таким образом,

Теперь мы можем записать экспоненту оператора как

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука