Читаем Отличная квантовая механика полностью

b) Подобным образом для матрицы ĈA)

(C)ij = C*ji = λ*A*ji = λ*(A)ij.

c) С одной стороны, матрица оператора представляет собой произведение матриц [см. упр. A.39, c)]:

Для сопряженной матрицы получаем

С другой стороны, произведение матриц Â и равно

а это совпадает с уравнением (РА.27).


Решение для упражнения A.59. Пусть Â|ψ⟩ = |𝝌⟩. Тогда ⟨ψ|Â = ⟨𝝌| и, таким образом,

⟨ψ|Â|ϕ⟩* = ⟨𝝌|ϕ⟩* = ⟨ϕ|𝝌⟩ = ⟨ϕ|Â|ψ⟩.

Этот результат можно получить также путем рассуждения, основанного на том, что объекты ⟨ψ|Â|ϕ⟩ и ⟨ϕ|Â|ψ⟩ являются сопряженными друг с другом, потому что связаны сменой порядка на противоположный и заменой оператора на сопряженный с ним оператор. Поскольку эти два объекта сопряжены и при этом являются числами, они должны быть комплексно-сопряженными по отношению друг к другу.


Решение для упражнения A.60. Найдем собственные значения и собственные векторы оператора такие что или

Данное уравнение при ненулевом |𝑣⟩ может удовлетворяться только в том случае, если детерминант матрицы в левой части обращается в нуль:

(РА.29) называется характеристическим уравнением матрицы

Согласно основной теореме алгебры, это уравнение имеет по крайней мере один корень, поэтому и имеет по крайней мере одно собственное значение 𝑣1 и соответствующий ему собственный вектор |𝑣1⟩:

Для начала заметим, что поскольку эрмитов, то

согласно (A.37), так что величина

действительна.

Далее выберем векторы |𝑣2⟩, …, |𝑣N⟩ такие, что вместе с ранее найденным собственным вектором |𝑣1⟩ они образуют ортонормальный базис в нашем гильбертовом пространстве 𝕍. Так как этот базис ортонормальный, мы находим для первого столбца матрицы в этом базисе

Первая строка этой матрицы имеет то же свойство, поскольку Â эрмитов:

Делаем вывод, что матрица оператора в базисе {|𝑣i⟩} имеет вид

где — это матрица (N — 1) × (N — 1). Благодаря соотношениям (РА.30) оператор, связанный с этой матрицей, отображает подпространство 𝕍1 ⊂ 𝕍, остовом которого является множество {|𝑣2⟩, …, |𝑣N⟩}, на себя. Рассуждения можно повторить для оператора в 𝕍1, чтобы получить базис {|v′2⟩, …, |𝑣N⟩}, в котором |𝑣2⟩ представляет собой собственный вектор и, следовательно, собственный вектор В базисе {|𝑣1⟩, |𝑣2⟩, …, |𝑣N⟩} этот оператор принимает вид

Повторив данную процедуру еще N — 2 раза, мы полностью диагонализируем и находим множество собственных векторов {|𝑣i⟩}, которые образуют ортонормальный базис.


Решение для упражнения A.61. Сравнивая (A.38) и (A.24), находим


Решение для упражнения A.62. Используя определение, данное в (A.38), выпишем выражение для оператора действующего на один из элементов его собственного базиса


Решение для упражнения A.64. Оператор поворота в ℝ2 представлен матрицей (упр. A.41)

Транспонировав эту матрицу, мы обнаруживаем, что она не эрмитова. Чтобы найти ее собственные значения, запишем характеристическое уравнение этой матрицы:

Таким образом, наши собственные значения равны

Собственные значения представляют собой комплексные числа; поэтому, если не выполняется ϕ = 0 или ϕ = π, матрица не имеет собственных векторов в двумерном геометрическом пространстве ℝ2. Это неудивительно: при повороте вектора на угол, отличный от 0 или π, невозможно получить коллинеарный вектор. Однако, если мы рассмотрим эту матрицу в линейном пространстве ℂ2 над полем комплексных чисел, выяснится, что она имеет два собственных значения 𝑣1,2 и два соответствующих им собственных вектора.

Найдем их. Начнем с собственного значения 𝑣1 = eiϕ = cosϕ + isinϕ. В этом случае уравнение обретает вид

или

iαsinϕ + βsinϕ = 0.

Решив это уравнение с учетом условия нормирования α2 + β2 = 1, определим собственный вектор

Подобным образом, для собственного значения 𝑣2 = e—iϕ получаем

Этот результат можно проиллюстрировать в контексте вектора поляризации (Приложение В): состояние с круговой поляризацией (т. е. такое, где траектория кончика вектора электрического поля представляет собой окружность) сохраняет круговую поляризацию при повороте системы отсчета.


Решение для упражнения A.66. Пусть — спектральное разложение оператора Разложим вектор |ψ⟩ по собственному базису Тогда

Поскольку |ψ⟩ — собственный вектор также имеет место равенство

Но вектор можно разложить по одному конкретному базису только одним способом, поэтому 𝑣ψi = 𝑣iψi для всех i. Отсюда 𝑣i = 𝑣 для всех i, при которых ψi ≠ 0, так что в разложении |ψ⟩ ненулевыми являются только коэффициенты при тех элементах базиса, для которых


Решение для упражнения A.67

a) Предположим, существует два собственных базиса, {|𝑣i⟩} и {|ωi⟩}. Согласно упр. A.66, каждый из |ωi⟩ должен быть пропорционален одному из |𝑣i⟩. А поскольку оба базиса представляют собой нормированные ортогональные множества, они должны быть идентичны друг другу с точностью до фазовых множителей.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука