Читаем Отличная квантовая механика полностью

где мы предположили, что — наш базис. Возьмем скалярное произведение обеих частей уравнения (РА.16) с произвольным базисным элементом |𝑣j⟩ и найдем, пользуясь ортонормальностью базиса,


Решение для упражнения A.22

a) В множестве {|ω1⟩, |ω2⟩} имеется два вектора. Поэтому достаточно показать, что оно ортонормально (тогда из упр. A.19 и двумерности нашего гильбертова пространства будет следовать, что это множество является базисом). Используя правила скалярного произведения (не забывайте применять комплексное сопряжение, где это необходимо!), находим

Аналогичным образом

а отсюда ⟨ω21⟩ = ⟨ω12* = 0. Остается проверить ⟨ω22⟩.

b) Воспользовавшись определением A.7 матричного вида вектора, находим

Чтобы разложить векторы |ψ⟩ и |ϕ⟩ по базису {|ω1⟩, |ω2⟩}, находим их скалярные произведения с элементами базиса, пользуясь правилом A.5 перемножения матриц:

c) Для скалярного произведения имеет место равенство


Решение для упражнения A.23. С одной стороны, заметим, что |a⟩ — нормированный вектор, а значит, ⟨a| a⟩ = 1. С другой стороны,

из чего следует, что


Решение для упражнения A.24. Во-первых, заметим, что ни один из векторов |𝑣i⟩, определенных уравнением (A.9), не может быть равен нулю, потому что каждый из них представляет собой нетривиальную линейную комбинацию линейно независимых векторов |ω1⟩, …, |ωj⟩.

Во-вторых, нам необходимо убедиться, что векторы |𝑣i⟩ ортогональны друг другу. Для этого достаточно показать, что каждый вектор |𝑣k+1⟩ ортогонален всем |𝑣j⟩ при jk. Мы сделаем это следующим образом:

отсюда вытекает, что множество {|𝑣i⟩} ортогонально. Кроме того, оно нормированно и содержит N = dim 𝕍 элементов. Согласно упр. A.19, такое множество образует базис в 𝕍.


Решение для упражнения A.25. Для начала выберем произвольный ортонормальный базис такой что |ωN⟩ = |ψ⟩. Затем определим следующие векторы:

Несложно убедиться, что эти векторы нормированы и ортогональны друг другу, а также |ω2⟩, …,|ωN-1⟩, поэтому множество {|𝑣1⟩, |ω2⟩, …,|ωN–1⟩, |ψ(1)⟩} образует ортонормальный базис. Кроме того, имеют место равенства и

Повторяем эту процедуру m — 1 раз. Для каждого i мы определяем

так что и После завершающего шага мы получаем ортонормальный базис {|𝑣1⟩, …, |𝑣m⟩, |ωm+1⟩, …, |ωN–1⟩, |ψ(m)⟩}, где для всех 1 ≤ im, но ⟨ωi|ψ⟩ для всех m + 1 ≤ iN–1, а также ⟨ψ(m)|ψ⟩ = 0. Согласно упр. A.21, это означает, что


Решение для упражнения A.26. Чтобы доказать неравенство Коши — Буняковского, сначала заметим, что для любых векторов |a⟩, |b⟩ и комплексного скаляра λ выполняется соотношение

0 ≤ ‖|a⟩ — λ|b⟩‖2 (РА.17)

Раскрывая скобки, мы видим, что

0 ≤ ⟨a|a⟩ — λ⟨a|b⟩ — λ*b|a⟩ + |λ|2b|b⟩.

Если |b⟩ = 0, неравенство Коши — Буняковского становится тривиальным. Если же нет, установим λ = ⟨b|a⟩/⟨b|b⟩ = ⟨a|b*/⟨b|b⟩, и тогда приведенное выше неравенство приобретает следующий вид:

откуда находим

|⟨a|b⟩|2 ≤ ⟨a|a⟩⟨b|b⟩. (РА.18)

Взятие квадратного корня из обеих частей неравенства дает требуемый результат

|⟨a|b⟩| ≤ ‖|a⟩‖ × ‖|b⟩‖. (РА.19)

Единственный случай, при котором неравенство Коши — Буняковского может стать равенством, — это когда неравенство (РА.17) также становится равенством, что происходит только в случае, когда |a⟩ = λ|b⟩. И наоборот, если |a⟩ = λ|b⟩ при любом λ, то |⟨a|b⟩|2 = |λ|2|⟨a|a⟩|2 и ⟨a|a⟩⟨b|b⟩ = |λ|2|⟨a|a⟩|2, так что две части неравенства (РА.18) равны между собой.


Решение для упражнения A.27. Неравенство треугольника — это прямое следствие неравенства Коши — Буняковского. Чтобы в этом убедиться, начнем с вычисления нормы вектора |a⟩ + |b⟩:

‖|a⟩ + |b⟩‖2 = ⟨a|a⟩ + ⟨a|b⟩ + ⟨b|a⟩ + ⟨b|b⟩ = ‖|a⟩‖2 + ‖|b⟩‖2 + ⟨a|b* + ⟨a|b⟩ = ‖|a⟩‖2 + ‖|b⟩‖2 + 2Re{⟨a|b⟩} ≤ ‖|a⟩‖2 + ‖|b⟩‖2 + 2 |⟨a|b⟩| ≤ (поскольку Re{z} ≤ |z|) ≤ ‖|a⟩‖2 + ‖|b⟩‖2 + 2‖|a⟩‖ × ‖|b⟩‖ = (согласно неравенству Коши-Буняковского) = (‖|a⟩‖ + ‖|b⟩‖)2.

Взятие квадратного корня из обеих частей даст нам требуемый результат.

‖|a⟩ + |b⟩‖ ≤ ‖|a⟩‖ + ‖|b⟩‖. (РА.20)


Решение для упражнения A.28. Чтобы показать, что 𝕍 есть линейное пространство, мы должны проверить весь набор аксиом линейного пространства из определения A.1. Пусть |a⟩, |b⟩, |c⟩ — произвольные векторы в 𝕍, а λ, μ — произвольные скаляры в 𝔽. Мы находим:

1. Коммутативность

a| + ⟨b| = сопр(|a⟩ + |b⟩) = сопр(|b⟩ + |a⟩) = ⟨b| + ⟨a|.

2. Ассоциативность

(⟨a| + ⟨b|) + ⟨c| = сопр ((|a⟩ + |b⟩) + |c⟩) = сопр (|a⟩ + (|b⟩ + |c⟩)) = ⟨a| + (⟨b| + ⟨c|).

3. Нулевой элемент. Поскольку

a| + ⟨zero| = сопр (|a⟩ + |zero⟩) = сопр (|a⟩) = ⟨a| ⟨zero| есть нулевой элемент в 𝕍.

4. Противоположный элемент. Определим —⟨a| ≡ сопр (—|a⟩) и убедимся, что этот элемент противоположен ⟨a|:

a| + (—⟨a|) = сопр(|a⟩ + (—|a⟩)) = сопр(|zero⟩) = ⟨zero|.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука