Читаем Отличная квантовая механика полностью

Решение для упражнения 5.83. Так как линейное пространство матриц 2 × 2 четырехмерно и

имеет четыре элемента, достаточно убедиться, что Q является остовом (упр. A.7). Разложить произвольную матрицу по базису Q означает найти коэффициенты разложения

которое мы можем переписать в матричном виде как

Решив это уравнение относительно λ, находим

или

Мы видим, что разложение на элементы Q существует для всех так что Q действительно является остовным множеством.


Решение для упражнения 5.84

Подставив уравнения из пункта (a), получим уравнение (5.45).


Решение для упражнения 5.85. Любой оператор плотности записывается в базисе {|𝑣n⟩} как

Подставив (5.47) в это разложение, находим

(суммирование по m и по n идет от 1 до N, тогда как суммирование по i — от 1 до N2). Сравнивая приведенное выше уравнение с (5.46), мы видим, что выражение в квадратных скобках равно


Решение для упражнения 5.86. Воспользовавшись разложением (Р5.28), получаем

Поэтому


Решение для упражнения 5.87. Мы можем рассматривать тензор процесса (5.48) как набор матриц Enm (где n, m ∈ {1, …, N}), каждая из которых задается выражением

Используя (Р5.29) и (Р5.31), находим


Решение для упражнения 5.88. Следуя логике рассуждений, примененных в упр. 5.80, мы предполагаем, что состояние представляет собой ансамбль, в котором состояние возникает с вероятностью α, а состояние — с вероятностью β. Тогда, используя условные вероятности (Б.6), мы можем записать вероятность того, что детектор покажет после измерения выходное состояние j, следующим образом:


Решение для упражнения 5.89. Воспользовавшись результатом предыдущего упражнения и исходя из того, что находим:


Решение для упражнения 5.90. Воспользовавшись разложением (Р5.30), которое применимо в данном случае, и результатом предыдущего упражнения, получаем

При этом (5.39) можно переписать в виде

Сравнив эти два уравнения, мы видим, что выражение в квадратных скобках в уравнении (Р5.33) есть на самом деле матрица j-го POVM-элемента, т. е.


Решение для упражнения 5.91

a) Вычислим вероятность выходного значения j-го детектора для всех и j ∈ {1,2} с использованием результата упр. 5.73. Находим:

b) Заметим, что наше множество пробных состояний будет таким же, как (5.44), за исключением того, что теперь мы работаем с кубитом поляризации фотона, а не с кубитом спина. Значит, мы можем использовать разложение (5.47) с коэффициентами, заданными уравнением (Р5.31) (заменив состояния |↑⟩ и |↓⟩ на |H⟩ и |V⟩ соответственно). Итак, воспользовавшись результатом упр. 5.90, получаем

Глава РA

Решения к упражнениям приложения A

Решение для упражнения A.1

a) Да. Нет. Да. Да. Поле над самим собой — это линейное пространство, потому что все свойства, перечисленные в определении A.1, следуют из свойств сложения и умножения элементов поля. ℝ над ℂ не является линейным пространством, поскольку при умножении «вектора» (действительного числа) на «скаляр» (комплексное число) мы можем получить число, которое не будет действительным, т. е. не окажется уже элементом линейного пространства. Наконец, ℂ над ℝ — линейное пространство, так как сложение комплексных чисел и умножение комплексного числа на действительное дает комплексное число, и это доказывает, что данные операции определены верно. Несложно убедиться, что их свойства эквиваленты аксиомам определения A.1.

b) Да. Нет. Сложение двух многочленов или их умножение на число (как действительное, так и комплексное) дает многочлен степени не выше исходных. Множество многочленов степени > n не образует линейного пространства, в частности, потому что не содержит нулевого элемента.

c) Да. Нет. В первом случае нулевой элемент — это функция 𝑓(x) ≡ 0. Множество функций, таких что 𝑓(1) = 1, этого элемента не содержит.

d) Да. Сумма двух периодических функций с периодом T или произведение такой функции на число также является периодической функцией с периодом T.

e) Да. Из геометрии известно, что сложение векторов и умножение вектора на число дает вектор. Можно убедиться, что свойства этих операций удовлетворяют аксиомам линейного пространства. Обратите внимание: поскольку N-мерный вектор может быть определен столбцом из N действительных чисел (координаты вектора), мы вправе сказать, что линейное пространство N-мерных геометрических векторов изоморфно (эквивалентно) линейному пространству столбцов из N действительных чисел.


Решение для упражнения A.2

a) Предположим, что существуют два нулевых элемента, |zero⟩ и |zero′⟩. Тогда, согласно аксиоме 3, мы видим, что, с одной стороны, |zero⟩ + |zero′⟩ = |zero′⟩, а с другой — |zero⟩ + |zero′⟩ = |zero′⟩ + |zero⟩ = |zero⟩ (по аксиоме 1). Следовательно, |zero⟩ и |zero′⟩ представляют собой один и тот же элемент 𝕍 и, значит, должны быть равны между собой.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука