Читаем Отличная квантовая механика полностью

где мы установили при температуре абсолютного нуля. Аппроксимируя sin2θ ≈ θ2, cosθ ≈ 1 — θ2/2, cosθ ≈ 1 — θ2 для малых θ, получаем

Данная производная не может быть положительной, потому что длина блоховского вектора при t = 0 уже является максимально возможной и равна 1. Это означает, что –2/T2 + 1/T1 ≤ 0 или T2 ≤ 2T1.


Решение для упражнения 5.61. Сначала проследим эволюцию блоховского вектора, связанного с конкретной отстройкой Δ, примерно так, как мы действовали при выполнении упр. 4.74. Применив импульс площадью π/2 к состоянию «спин-вверх», мы преобразуем его в состояние со спином, направленным вдоль оси y, так что Последующая эволюция управляется уравнениями (5.34):

В момент времени t = t0 π-импульс разворачивает спин на 180º вокруг оси x, что дает в результате

Последующая эволюция приводит к

Теперь, проинтегрировав компоненты этого вектора по всем отстройкам, находим, по аналогии с упр. 4.76,


Решение для упражнения 5.62. Состояние теплового равновесия характеризуется блоховским вектором Начальный π-импульс перевернет этот вектор, так что Последующая эволюция, согласно уравнениям (5.34), проходит так:

Мы видим, что когда или t = T1 ln2.


Решение для упражнения 5.63

μHH = 3/4, μVH = 1/4, μHV = 1/3, μVV = 2/3,


Решение для упражнения 5.64. Σjμji представляет собой сумму вероятностей для всех возможных выходных состояний при заданном i-м результате квантового измерения. Поскольку для каждого измерения показывается ровно одно выходное состояние, эта сумма равна единице.


Решение для упражнения 5.65. Предположим, что в детектор попадает n фотонов. Каждый из них порождает лавину с вероятностью η. Состояние «нет щелчка» возникает, если ни один из фотонов не породил лавины частиц, что происходит с вероятностью (1 — η)n. Отсюда μнет щелчка, n = (1 — η)n. Поскольку μнет щелчка, n + μщелчок, n = 1 (упр. 5.64), имеет место равенство μщелчок, n = 1 — (1 — η)n.


Решение для упражнения 5.66. Эрмитова природа элементов POVM следует из того, что любой проекционный оператор (где |𝑣i⟩ — это соответствующий базисный вектор) является эрмитовым, а все μji действительны.

Чтобы показать неотрицательность, запишем для произвольного ненулевого вектора |ψ⟩:

Правая часть этого выражения неотрицательна, потому что каждая μji — вероятность. Это означает, что неотрицателен, согласно определению A.22.


Решение для упражнения 5.67

a) Воспользовавшись результатом упр. 5.63 и просуммировав по всем возможным результатам квантового измерения согласно (5.36), находим

b) Аналогично, применив результаты упр. 5.65, получаем


Решение для упражнения 5.68

В последнем равенстве мы использовали разложение единицы (A.26).


Решение для упражнения 5.69

a) Воспользовавшись теоремой полной вероятности (упр. Б.6), находим:

b) Аналогично,

где — это состояние Боба в случае, если Алиса получила при измерении |𝑣i⟩.


Решение для упражнения 5.70

Метод I: использование чистого состояния и формульного аппарата проективных измерений

a) Воспользуемся моделью, изображенной на рис. 5.2, т. е. будем считать, что детектор Алисы состоит из идеального устройства измерения квантовой поляризации, за которым размещен скремблер. Существует четыре варианта, которые могут дать H на выходе детектора Алисы.

• Начальное состояние есть |Ψ1⟩, а квантовое поляризационное измерение Алисы дает |H⟩. В этом случае ненормированное состояние фотона Боба есть Вероятность того, что скремблер Алисы отобразит ее результат на выходное состояние H, равна 3/4.

• Начальное состояние есть |Ψ1⟩, а квантовое поляризационное измерение Алисы дает |V⟩. В этом случае ненормированное состояние фотона Боба есть Вероятность того, что скремблер Алисы отобразит ее результат на выходное состояние H, равна 1/3.

• Начальное состояние есть |Ψ2⟩, а квантовое поляризационное измерение Алисы дает |H⟩. В этом случае ненормированное состояние фотона Боба есть ⟨H2⟩ = |V⟩. Вероятность того, что скремблер Алисы отобразит ее результат на выходное состояние H, равна 3/4.

• Начальное состояние есть |Ψ2⟩, а квантовое поляризационное измерение Алисы дает |V⟩. В этом случае ненормированное состояние фотона Боба есть ⟨V2⟩ = 0.

Таким образом, общая ненормированная матрица плотности Боба равна

b) Рассуждая аналогично в случае, когда измерение Алисы дало 𝑣, мы находим следующий ансамбль:

• Начальное состояние есть |Ψ1⟩, а квантовое поляризационное измерение Алисы дает |H⟩. В этом случае ненормированное состояние фотона Боба есть Вероятность того, что скремблер Алисы отобразит ее результат на выходное состояние V, равна 1/4.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука