Теперь мы переходим к обсуждению линейных операторов, представляющих собой ключевой элемент квантовой физики[28]
. Они играют двоякую роль. Прежде всего операторы описывают эволюцию: с течением времени квантовые состояния изменяются, и это изменение математически выражается операторами. Второе, несколько менее очевидное, приложение линейных операторов состоит в формальном описании квантовых измерений. В этом разделе мы начнем с первой их роли.Упражнение 1.22.
Найдите матрицу оператора |+⟩⟨—| в каноническом базисе и базисе {|Упражнение 1.23.
Найдите в каноническом базисе матрицу линейного оператораa) |
b) |+⟩ на |
Примером физической операции, которую можно связать с квантовым оператором, может служить волновая пластинка, изменяющая состояние поляризации фотона. Чтобы рассчитать этот оператор, мы должны принять некоторое соглашение. Как сказано в разд. В.3, волновая пластинка изменяет относительную фазу необыкновенной (параллельной оптической оси) и обыкновенной (перпендикулярной оптической оси) поляризаций на угол ∆ϕ, который равен π для полуволновой пластинки и π/2 для четвертьволновой. Кроме того, она вводит общий сдвиг фазы для всей волны.
Эти оптические фазовые сдвиги в применении к единичному фотону превращаются в квантовые фазовые сдвиги. Общим фазовым сдвигом, одинаковым для всех компонентов поляризации, можно пренебречь (см. разд. 1.3). Мы, однако, должны договориться, как с ним обращаться в наших выкладках. Будем считать, что волновая пластинка не дает фазового сдвига на обыкновенный компонент поляризации, тогда как необыкновенный ее компонент претерпевает фазовый сдвиг ∆ϕ. Иными словами, волновая пластинка с оптической осью, ориентированной под углом θ к горизонтали, производит следующие преобразования:
Упражнение 1.24.
Найдите в каноническом базисе матрицы операторов, связанных с полуволновой и четвертьволновой пластинками с оптической осью, ориентированной под углом α к горизонтали, при помощи следующего пошагового алгоритма:a) Напишите оператор
b) Выразите каждый бра- и кет-вектор в ответе пункта a) в матричной форме в каноническом базисе и вычислите матрицу результирующего оператора.
c) Подставьте значения ∆ϕ для полуволновой и четвертьволновой пластинок.
Ответ:
Упражнение 1.25.
Пользуясь результатом предыдущего упражнения, убедитесь в верности следующих утверждений:a) при применении к фотону, линейно поляризованному под углом θ, полуволновая пластинка с оптической осью, ориентированной под углом α, дает фотон, линейно поляризованный под углом 2α — θ, в соответствии с рис. В.4;
b) четвертьволновая пластинка с оптической осью, ориентированной горизонтально или вертикально, превращает фотон с круговой поляризацией в фотон с поляризацией под ±45° и наоборот в соответствии с упр. В.9.
Отступление 1.6.
Как получить фотон?Вот самый очевидный, но неверный ответ на этот вопрос: использовать ослабленный сигнал лазера. Предположим, у нас есть импульсный лазер со средней мощностью
Эти рассуждения ошибочны, поскольку не учитывают, что реальное число фотонов в импульсах, проходящих через ослабитель, будет стохастическим в соответствии с распределением Пуассона (см. разд. Б.3). Хотя в среднем, возможно, действительно получится один фотон на импульс, это не означает, что каждый импульс будет содержать
Несмотря на это возражение, в некоторых случаях ослабленный лазер служит полезной заменой настоящего источника фотонов. В частности, в практической квантовой криптографии лазер ослабляется до чрезвычайно низкого уровня, так чтобы вероятность того, что каждый импульс содержит хотя бы один фотон, стала весьма малой. Тогда вероятность содержания в импульсе более одного фотона пренебрежимо мала, и безопасность связи не страдает.