Читаем Отличная квантовая механика полностью

Постулат квантовой физики об измерениях, определенный нами в разд. 1.4, гласит, что квантовое измерение выполняется в ортонормальном базисе, а результат этого измерения есть случайный элемент этого базиса. Сделаем еще шаг вперед и свяжем с каждым элементом |𝑣i⟩ базиса действительное число 𝑣i. Тогда вместо «результатом измерения является состояние |𝑣i⟩» мы будем говорить «результатом измерения является величина 𝑣i».

Для некоторых измерений такая связь естественна. Например, состояние с определенным положением, такое как |xi⟩ = |x = 3 м⟩, естественным образом связано со значением координаты частицы (xi = 3 м). Для других измерений, вроде измерения поляризации фотона, естественной связи между элементами базиса и числами не существует, но такую связь можно ввести искусственно. К примеру, если мы измеряем в каноническом базисе, то можем связать число 1 с состоянием |H⟩, а число –1 с состоянием |V⟩.

Информацию о базисе измерения и связанных с ним величинах удобно выразить, скажем, в виде оператора:

Этот оператор называется наблюдаемым оператором, или просто наблюдаемым (observable). Как мы знаем (разд. A.8), элементы |𝑣i⟩ базиса измерений (собственного базиса наблюдаемого) представляют собой собственные состояния, или собственные векторы наблюдаемого, а соответствующие им величины 𝑣i являются его собственными значениями. Воспользовавшись (1.12), можно ввести наблюдаемый оператор для почти любого измерения или измеряемой величины: положения, импульса, момента импульса, энергии и т. п. Как мы увидим в ближайших разделах, наблюдаемые операторы в квантовой физике имеют первостепенное значение.

Из этого общего утверждения есть одно важное исключение. Время в квантовой физике никогда не рассматривается как оператор. Не существует ни собственных состояний времени, ни квантов времени. Время — это просто непрерывная переменная.


Упражнение 1.29. Найдите наблюдаемые, связанные с базисами {|H⟩, |V⟩}, {|+⟩, |—⟩} и {|R⟩, |L⟩} (т. е. с измерительными приборами на рис. 1.2) и собственными значениями ±1 (соответственно) в нотации Дирака. Найдите матрицы этих операторов в базисе {|H⟩, |V⟩}.

Ответ: операторы Паули (1.6):

|H⟩⟨H|—|V⟩⟨V| = σz; (1.13a)

|+⟩⟨+|—|—⟩⟨—| = σx; (1.13b)

|R⟩⟨R|—|L⟩⟨L| = σy. (1.13c)

Итак, мы увидели обе роли операторов в квантовой механике: это преобразования квантовых состояний и описания измерительных приборов. Естественно спросить, схожи ли физические реализации одних и тех же операторов в разных ролях. Пример выше показывает, что это не так. Измерительные приборы, реализующие оператор Паули, показаны на рис. 1.2. При этом операторы Паули как средства преобразования состояния реализованы в упр. 1.26. Видно, что конфигурации в том и другом случаях совершенно различны.


Упражнение 1.30. Покажите, что:

a) операторы, соответствующие физическим наблюдаемым (1.12), являются эрмитовыми;

b) любой эрмитов оператор может быть связан с некоторым физическим наблюдаемым, т. е. его можно выразить в виде (1.12) с действительными собственными значениями и собственными состояниями, образующими ортонормированный базис.


Упражнение 1.31. Выполните спектральное разложение матриц Паули (1.7) с использованием методов линейной алгебры. Проверьте соответствие вашего результата определению, данному в упр. 1.29.

Мы видим, что каждое измерение может быть связано с некоторым эрмитовым оператором и каждый эрмитов оператор может быть связан с некоторым измерением. Более того, наблюдаемый оператор содержит в компактной форме полную информацию о базисе измерения и связанных с ним собственных значениях. Если дается эрмитова матрица наблюдаемого оператора, мы можем извлечь из нее эту информацию посредством спектрального разложения[30].

1.9.2. Среднее значение и неопределенность наблюдаемого

Предположим, мы измеряем наблюдаемое в состоянии |ψ⟩. Результат этого измерения имеет вероятностный характер: мы будем наблюдать каждую величину 𝑣i с вероятностью pri = |⟨𝑣i|ψ⟩|2. Мы можем отнестись к измеренной величине наблюдаемого как к случайной величине (приложение Б) и найти ее статистические характеристики: математическое ожидание и дисперсию.


Упражнение 1.32. Наблюдаемое измеряется в состоянии |ψ⟩.

a) Покажите, что математическое ожидание этого измерения равно

Выражение в правой части этого уравнения называется также квантовым средним значением наблюдаемого в состоянии |ψ⟩.

b) Покажите, что дисперсия величины равна:

и что эта дисперсия может быть вычислена по формуле:

Как и в теории вероятностей, неопределенность квантовой величины равна квадратному корню из его дисперсии.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука