Упражнение 1.40.
Повторите доказательство без предположения (1.22). Остался бы принцип неопределенности (1.21) в силе, если бы правая часть уравнения равняласьУпражнение 1.41.
Покажите, что еслиУпражнение 1.42.
ДляПринцип неопределенности Гейзенберга — одно из важнейших следствий квантовой физики и одно из главных ее отличий от физики классической. В те времена, когда квантовая механика только зарождалась, этот принцип был одной из самых противоречивых идей. Как и постулат об измерениях, принцип неопределенности прямо противоречил детерминистской картине мира, принятой тогда в классической физике. Согласно этой картине, любая неопределенность, полученная в ходе измерений, являлась следствием несовершенства измерительной техники, и путем усовершенствования этой техники ее можно было снижать до бесконечности. В рамках квантовой механики это не так: если создать устройство, способное точно измерить одно наблюдаемое в каком-то конкретном состоянии системы, то эта установка, какой бы замечательной она ни была, обязательно покажет плохой результат при измерении другого наблюдаемого.
Особенно интересен случай из упр. 1.41. Если коммутатор двух наблюдаемых пропорционален единичному оператору, то произведение их неопределенностей имеет нижнюю границу для
1.10. Квантовая эволюция
Наша цель в этом разделе — выяснить, как меняются (эволюционируют) квантовые состояния со временем: при заданном начальном состоянии |ψ(0)⟩ физической системы нам нужно определить ее состояние |ψ(
Правила квантовой эволюции невозможно вывести из тех постулатов, которые мы изучали до сих пор. Поэтому применим здесь ту же тактику, которую использовали при выработке постулата об измерениях. Сначала проведем интуитивные физические рассуждения об эволюции конкретной физической системы — фотона. Затем обобщим их на остальные системы и придадим им строгий вид.
Посмотрим еще раз на уравнение (1.2). Эволюция состояния фотона здесь заключена в общем фазовом множителе e−iωt
.До сих пор мы не обращали на него внимания, потому что, согласно нашим рассуждениям, он никак не влияет на физические свойства состояния. Но теперь давайте рассмотрим этот множитель подробнее.
Вспомнив, что энергия фотона равна
где индекс
Следующий наш шаг заключается в привлечении гипотезы де Бройля; согласно ей, не только фотоны, но и все свободно движущиеся частицы могут быть связаны с волнами, пространственно-временное поведение которых описывается множителем
Поговорим об этом операторе подробнее. Поскольку он соответствует некоторому физическому наблюдаемому, он эрмитов и потому допускает спектральное разложение
где собственные состояния с определенной энергией {|
Каждый компонент данного разложения меняется во времени согласно (1.25). Поскольку эта эволюция линейна, мы можем записать:
Мы постулируем, что это уравнение универсально и применимо к эволюции всех квантовых состояний.
Упражнение 1.43.
Пусть начальное состояние некоторой системы есть суперпозиция двух энергетических собственных состоянийМы видим, что в то время как для энергетических собственных состояний (например, в случае состояний поляризации фотона определенной частоты) квантовая эволюция соразмеряется с нефизичным фазовым множителем, другие состояния все же меняют со временем свои физические свойства.