Странное понятие наблюдаемого оператора, введенное в предыдущем подразделе, оказывается весьма полезным. Оно не только несет в себе полную информацию об измерении, но и обеспечивает простой способ вычисления статистических свойств этого измерения в применении к заданному состоянию. Решим простой пример.
Упражнение 1.33
§. Вычислите среднее значение, дисперсию и неопределенность наблюдаемого в состоянии |+⟩.Чтобы интерпретировать приведенный ответ, вспомним, что наблюдаемое может быть измерено с использованием установки на рис. 1.2 a
. Наблюдаемое принимает значение +1, если фотон проходит (проецируется на состояние горизонтальной поляризации), и –1, если фотон отражается (проецируется на состояние вертикальной поляризации). Диагонально поляризованный фотон имеет равные шансы как пройти, так и отразиться, так что среднее значение результата измерений будет равно нулю. Что касается дисперсии, то в каждом измерении мы получаем величину либо +1, либо –1, так что среднеквадратичное отклонение от нуля должно быть равно единице.Это хороший пример перехода между классическими и квантовыми измерениями. Квантовые измерения имеют вероятностный характер: в данном случае каждый фотон будет случайным образом пропущен или отражен. В классической же физике все имеет детерминистский характер: если мы направим поляризованную под 45º классическую волну на PBS, она расщепится ровно пополам, безо всякой неопределенности. Принцип соответствия требует, чтобы квантовое поведение в макроскопическом пределе становилось классическим. Этот переход от квантового к классическому поведению можно проследить в следующем упражнении.
Упражнение 1.34.
Группа из N поляризованных под +45º фотонов направляется в PBS. Вычислите среднее значение и неопределенность разности N_ между числом пропущенных и отраженных фотонов.Подсказка:
воспользуйтесь упр. Б.5.Ответ:
среднее равно нулю, неопределенность равна На первый взгляд это может показаться странным: по мере того как наш эксперимент становится более макроскопическим, неопределенность в нем не снижается, а, напротив, повышается. Как это согласуется с классической физикой? Дело в том, что здесь имеет значение не абсолютная неопределенность, а относительная, т. е. Чем больше N
, тем выше относительная точность фотометрии в двух каналах, требуемая для обнаружения квантовых флуктуаций.Например, если N
= 104, то статистическое отклонение равно так что относительная неопределенность равна 1/100. Но если N = 106, эта неопределенность становится в 10 раз меньше, 1/1000. А теперь напомню, что энергия фотона очень мала (~ 4 × 10–19 Дж для видимого спектра), так что в любом эксперименте с участием макроскопически значимого количества света — даже в масштабе наноджоулей — задействовано громадное число фотонов. Относительная разность между прошедшей и отраженной энергиями ничтожна, и для ее регистрации требуются фотометры чрезвычайно высокой точности.1.9.3. Принцип неопределенности
Упражнение 1.35.
Покажите, что наблюдаемое в некотором квантовом состоянии |ψ⟩ имеет нулевую неопределенность тогда и только тогда, когда |ψ⟩ является собственным состоянием наблюдаемого
Упражнение 1.36.
Рассмотрим два эрмитовых оператора Покажите, что существует базис, в котором они одновременно диагонализируются, тогда и только тогда[31], когда Подсказка:
доказательство будет проще, если предположить, что один из операторов не имеет вырожденных собственных значений.Последнее упражнение показывает, что любые два коммутирующих наблюдаемых могут быть измерены одновременно. То есть можно построить устройство, выполняющее измерения в ортонормальном базисе, который можно связать одновременно с обоими этими наблюдаемыми.
Коммутирующие наблюдаемые «совместимы»: существует собственный базис Â
, такой, что если система приготовлена в одном из его элементов |𝑣i⟩, то она останется в этом состоянии при измерении наблюдаемого и результат измерения будет вполне определенным, а именно |𝑣i⟩[32]. Если же не коммутируют, то система, приготовленная в собственном состоянии наблюдаемого Â, при измерении может дать случайный результат[33]. Степень этой случайности количественно оценивается принципом неопределенности Гейзенберга, который мы сейчас выведем.
Упражнение 1.37.
Покажите, что для любых эрмитовых операторов где квантовое среднее вычисляется в произвольном состоянии |ψ⟩.
Упражнение 1.38.
Покажите, что для любых двух эрмитовых операторов Â, и любого состояния |ψ⟩Подсказка:
введите |a⟩ = Â|ψ⟩ и и примените неравенство Коши — Буняковского.
Упражнение 1.39.
Докажите принцип неопределенности Гейзенберга (Heisenberg uncertainty principle): для эрмитовых Â, и любого состояния |ψ⟩считая для простоты, что ⟨A
⟩ = ⟨B⟩ = 0. (1.22)