Приведенные результаты означают, что без знания результата измерения Алисы физические свойства фотона Боба не меняются, так что Боб не может извлечь
Так, может быть, от всех этих парадоксов получится уйти, вообще отказавшись от концепции квантового состояния и придумав другую теорию, которая столь же хорошо объясняла бы экспериментальные результаты, но не содержала бы теоретических концепций, противоречащих здравому смыслу? Ответ на этот вопрос мы найдем в разд. 2.3. А пока давайте обсудим еще один парадокс, который позволяет взглянуть на проблему под еще более острым углом. Рассмотрим следующий сценарий:
1. Алиса и Боб имеют множество общих копий состояния |Ψ—
⟩.2. Над каждой копией
3. После того как все измерения завершены, Боб восстанавливает квантовое состояние своего фотона по данным, которые он записал с использованием метода квантовой томографии (упр. 1.15), принимая «задним числом» во внимание (
Если бы измерения Боба происходили после измерений Алисы, то он благодаря явлению удаленного приготовления состояния восстановил бы состояние как |π/2 + θ⟩. Но мы уже знаем из упр. 2.41, что коррелирующие вероятности результатов Алисы и Боба не зависят от порядка измерений. То есть Боб получит в точности ту же статистику результатов своих измерений — те же prH
, prV, pr+, pr —, prR, prL — вне зависимости от того, делаются его измерения до или после измерений Алисы, и восстановит, следовательно, то же состояние |π/2 + θ⟩. Получается, что эффект удаленного приготовления состояния наблюдается дажеУпражнение 2.44
*. Покажите, что, если бы квантовое клонирование было возможно, возможна была бы и сверхсветовая связь.Подсказка:
используйте удаленное приготовление и квантовую томографию.Теперь рассмотрим ситуацию, в которой Алиса теряет свою долю запутанного состояния или просто отказывается сообщить нам о результатах своих измерений. Фотон поглощается на пути к детектору Алисы, или детектор отказывает, или фотон попросту улетает от Алисы в окно лаборатории и дальше в небо, где его, возможно, измерят какие-нибудь инопланетяне. Что мы можем сказать в этом случае о квантовом состоянии фотона[43]
Боба?Мы знаем одно (упр. 2.41): что бы ни происходило с фотоном Алисы, экспериментально измеряемые свойства фотона Боба не меняются. Поэтому если нас интересует описание фотона Боба, то мы можем сделать любое удобное нам предположение о судьбе фотона Алисы. Будем считать, что Алиса измерила свой фотон в каноническом базисе и не сообщила нам результат.
Предполагая еще раз, что начальным состоянием является |Ψ—
⟩, мы знаем, что Алиса может обнаружить при этом либо |Это самое большее из того, что возможно. Предполагая, что Алиса могла проводить измерения в других базисах, мы можем описать фотон Боба как «либо |
В главе 5 мы будем изучать свойства смешанных состояний и способы их математического описания. Пока же важно понять, что если мы теряем часть запутанного состояния, то оставшаяся часть