Предположим, что Алиса измеряет состояние
Такая корреляция сама по себе не так уж удивительна. Даже в обычной жизни мы можем представить себе игру, в которой Алисе дается одна туфля из пары, а Бобу — вторая. Каждая туфля упакована в непрозрачную коробку, так что их «ориентацию» увидеть нельзя. Затем Алиса летит к Венере, а Боб — к Марсу, где они открывают свои коробки. Предположим, Алиса обнаруживает в своей коробке левую туфлю. При этом она мгновенно узнает, что у Боба в коробке лежит правая туфля, хотя того при этом отделяют от нее миллионы километров.
Но свойства квантовых суперпозиций идут дальше этой простой картины. Помимо поляризационных корреляций в них существует определенное
Упражнение 2.27.
Предположим, что Алиса и Боб располагают состоянием |Ψ—⟩. Алиса измеряет свою часть состояния в базисе {|θ, |π/2 + θ⟩}. Покажите, что:a) если Алиса обнаруживает |θ⟩, то состояние Боба становится |π/2 +θ⟩;
b) если Алиса обнаруживает |π/2 +θ⟩, то состояние Боба становится |θ⟩;
c) каждый из этих результатов наблюдается с вероятностью 1/2.
Подсказка:
используйте свойство изотропности состояния |Ψ—⟩ (упр. 2.9).Это поистине замечательный результат. Выбрав угол наклона базиса измерения q, Алиса может удаленно приготовить произвольное состояние линейной поляризации (с точностью до ±90º) в локации Боба. Так происходит несмотря на то, что Алиса и Боб находятся, возможно, в миллионах километров друг от друга и не имеют возможности общаться между собой. Более того, все происходит мгновенно, т. е. быстрее скорости света!
На первый взгляд, такое
Наверное, каждый прилежный студент-физик в этот момент первым делом спросит, был ли данный вывод проверен экспериментально. Ответ положительный. Чтобы провести этот эксперимент, исследователь многократно подготавливает состояние |Ψ—
⟩ и проводит измерение Алисы, все время в одном и том же базисе. Каждый раз, когда Алиса обнаруживает, скажем, |θ⟩, экспериментатор измеряет поляризацию фотона Боба. По статистике этих измерений он может восстановить искомое состояние при помощи квантовой томографии (см. упр. 1.15) со сколь угодно высокой точностью.За последнюю четверть века физики исследовали самые разные варианты эффекта удаленного приготовления состояния. Некоторые из экспериментов были организованы так, что лаборатории Алисы и Боба разделялись несколькими километрами, а измерения происходили гарантированно в пределах пространственноподобного интервала, чтобы исключить даже теоретическую возможность для Алисы повлиять на состояние Боба посредством каких бы то ни было известных в природе взаимодействий. Все эти эксперименты недвусмысленно подтверждают верность квантовых предсказаний.
Но как же примирить полученные данные с причинностью? Чтобы ответить на данный вопрос, дадим сначала формальное описание локального измерения.
Предположим, что Алиса и Боб располагают некоторым запутанным состоянием и что Алиса проводит локальное измерение своей части этого состояния в некотором базисе. Каковы вероятности возможных результатов и какое состояние будет удаленно подготовлено в локации Боба в случае каждого результата? Прежде чем ответить на этот вопрос в общем случае, рассмотрим пример. Пусть общее состояние
и предположим, что Алиса проводит измерение в диагональном базисе.
Упражнение 2.28.
Перепишите состояние (2.12), выразив векторы состояния, соответствующие фотону Алисы, в диагональном базисе.суть нормированные векторы в гильбертовом пространстве Боба.