Читаем Отличная квантовая механика полностью

Поскольку векторы |+⟩ и |—⟩ ортогональны, ортогональны также |+⟩ ⊗ |b+⟩ и |—⟩ ⊗ |b⟩ в соответствии с уравнением (2.4). Это означает, что мы можем построить в 𝕍A ⊗ 𝕍B ортонормальный базис, содержащий упомянутые состояния в качестве элементов. Если мы измерим |Ψ⟩ в этом базисе, то получим |+⟩ ⊗ |b+⟩ с вероятностью с вероятностью Но это, в свою очередь, означает, что если только Алиса будет проводить измерение на своем фотоне, то она увидит состояние |+⟩ с вероятностью с вероятностью Действительно, если Алиса наблюдает у себя |+⟩, то состояние фотона Боба с определенностью становится |b+⟩, а если Алиса наблюдает |—⟩, оно становится |b⟩.

Мы видим, что для ответа на вопрос, поставленный в начале этого подраздела, достаточно переписать начальное запутанное состояние в виде линейной комбинации таких тензорных произведений, в каждом из которых компонент Алисы представляет собой элемент ее измерительного базиса. Проведем то же рассуждение в более общем виде.

Предположим, начальное состояние

где {|𝑣i⟩} — ортонормальный базис, в котором Алиса будет проводить свое измерение, а {|ωj⟩} — некоторый ортонормальный базис в гильбертовом пространстве Боба. Перепишем это в виде:

где есть вектор в гильбертовом пространстве Боба и

есть нормирующий множитель, такой что ║|bi⟩║ = 1 для любого i (в сумме (2.15) мы опускаем слагаемые с так что все 𝓝i конечны).

Таким образом, мы выразили состояние, которое предстоит измерить, в виде суммы ортогональных компонентов |𝑣i⟩ ⊗ |bi⟩. Амплитуды этих компонентов равны 1/𝓝i, так что вероятность, с которой Алиса увидит соответствующий |𝑣i⟩, равна prA,i = 1/𝓝i2. Всякий раз, когда это происходит, система Боба принимает соответствующее состояние |bi⟩.


Упражнение 2.29. Для физического состояния |Ψ⟩ покажите, что в (2.15)


Упражнение 2.30. Для состояния |Ψ⟩ = 𝓝 (|RV⟩ + |H+⟩):

a) найдите множитель 𝓝 такой, при котором |Ψ⟩ нормировано;

b) представьте это состояние в виде (2.15), где {|𝑣i⟩} — канонический базис;

c) найдите вероятности возможных результатов при проведении Алисой локального измерения в каноническом базисе и напишите удаленно приготовленное состояние фотона Боба для каждого из результатов Алисы.

Мы разработали метод предсказания результатов локальных измерений на запутанном состоянии. Этот метод функционален, но несколько неуклюж, так что мы сейчас введем понятие, которое позволит нам существенно упростить процедуру.

Частичное скалярное произведение (partial inner/scalar product) локального состояния |a⟩ в гильбертовом пространстве 𝕍A и двусоставного состояния в гильбертовом пространстве 𝕍A ⊗ 𝕍B (где {|𝑣i⟩} и {|ωj⟩} — ортонормальные базисы в 𝕍A и 𝕍B соответственно) есть состояние в гильбертовом пространстве 𝕍B, заданное

Определение для частичного скалярного произведения |Ψ⟩ и локального состояния в пространстве 𝕍B дается аналогично.


Упражнение 2.31. Для |ψ⟩ = 2 |H⟩ + i|𝕍⟩ найдите B⟨ψ|Ω⟩ и ⟨Π|ψ⟩A, где |Ω⟩ = 2 |HH⟩ + 3 |H𝕍⟩ + 4 |𝕍H⟩, |Π⟩ = (2 |H⟩ + i|𝕍⟩) ⊗ (i|H⟩ — |𝕍⟩), а индексы A и B на состоянии |ψ⟩ указывают, что оно локализовано в пространстве Алисы или Боба соответственно.


Упражнение 2.32. Покажите, что для любого разделимого состояния |ab⟩ ∈ 𝕍A ⊗ 𝕍B и любого состояния |a'⟩ ∈ 𝕍A

a' | ab⟩ = ⟨a' | a⟩ |b⟩. (2.18)


Упражнение 2.33. Предположим, что |Ψ⟩ — состояние в пространстве тензорных произведений, а |a⟩ и |b⟩ — состояния в пространствах Алисы и Боба соответственно. Покажите, что

a | (⟨b|Ψ⟩) = ⟨b | (⟨a|Ψ⟩) = ⟨ab|Ψ⟩. (2.19)


Упражнение 2.34. Покажите, что для любых двух ортонормальных базисов {|𝑣i⟩} ⊗ {|ωj⟩} и {|v'i⟩} ⊗ {|ω'j⟩} в 𝕍A ⊗ 𝕍B локального состояния |a⟩ ∈ 𝕍A и двусоставного состояния

частичное скалярное произведение ⟨a| Ψ⟩ не зависит от выбора базиса, т. е.


Упражнение 2.35. Покажите, что в уравнении (2.15):

a) |bi⟩ = 𝓝i ⟨𝑣i|Ψ⟩;

b) ║ ⟨𝑣i|Ψ⟩ ║ = 1/𝓝i.

Последнее упражнение предлагает прямолинейный способ вычислить разложение (2.15) для заданного состояния и базиса измерения Алисы и, следовательно, вычислить также результаты локальных измерений. И в самом деле, частичное скалярное произведение дает не только состояние |bi⟩, которое будет приготовлено удаленно в локации Боба, но и вероятность каждого результата на стороне Алисы.

Мы можем рассматривать этот результат как обобщение постулата квантовой физики об измерениях на локальные измерения. Резюмируем его. Локальное измерение Алисы на двусоставном состоянии |Ψ⟩ в базисе {|𝑣i⟩} вызовет коллапс |Ψ⟩ на одно из случайно выбранных состояний 𝓝i |𝑣i⟩ ⊗ ⟨𝑣i|Ψ⟩ с вероятностью

prA,i = ⟨Ψ|𝑣i⟩ ⟨𝑣i|Ψ⟩. (2.22)

Это можно переформулировать на языке проекционных операторов (разд. 1.8): измерение Алисы превращает состояние |Ψ⟩ в множество ненормированных состояний а квадрат нормы каждого состояния в этом множестве есть вероятность соответствующего результата.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука