Читаем Пифагор и его школа полностью

Четыре теоремы Фалеса, связанные с углами и треугольниками, никак не могут соотноситься с египетской математикой еще и потому, что египтяне никогда не занимались сравнением углов по величине и подобием треугольников. Ни у египтян, ни у вавилонян вообще не было понятия угла как измеряемой величины. В отличие от греческой геометрии, в которой углы впервые стали объектом измерения, их геометрия была «линейной»{85}. (Известное деление круга на 360° появилось в вавилонской астрономии не ранее III в. до н. э.{86}).

Признавая восточные вычисления первым этапом развития математики, а греческую дедуктивную геометрию — вторым, мы видим в них логическую связь, но следует ли из нее историческая преемственность? Ведь при этом из поля зрения выпадает греческая практическая математика, которая, хотя и не была столь развита, как вавилонская, несомненно включала в себя многие факты, служившие материалом для доказательств первых математиков. Характерно, что вся терминология греческой математики — местного происхождения (за исключением слова «пирамида»), причем многие термины пришли из практической сферы{87}.Это в очередной раз ставит под сомнение реальность заимствований — они, как правило, оставляют свой след и в языке.

Математическая теория отнюдь не обязательно появляется на определенном этапе развития практической математики. Отсутствие теории во всех математиках древности, кроме греческой, показывает, что причины, приведшие к зарождению и последующему развитию с практических вычислений, не могут сами по себе вызвать стремление к дедуктивному доказательству. Если греки начали с доказательства положений, для практики явно бесполезных, значит, импульсы, приведшие к этому, шли из иных сфер общественной жизни.

Дедуктивное доказательство

В поисках истоков строгого логического доказательства, кроме самой математики, обычно называют еще две сферы общественной жизни, в которых оно могло зародиться: 1) философию, 2) политическое и судебное красноречие. Венгерский историк науки А. Сабо полагает, например, что математика VI — начала V в. до н. э. развивалась эмпирическим путем, а дедуктивное доказательство (в частности, доказательство от противного) и основанная на нем математическая теория стали возможны только после изысканий философов элейской школы — Парменида и Зенона (ок. 480–450 гг. до н. э.){88}.

На первый взгляд философия оказывается в более удачном положении, чем математика. Первыми дошедшими до нас образцами дедуктивного доказательства считаются фрагменты философской поэмы Парменида и сочинений его ученика Зенона. Парменид выдвигает свое основное положение: бытие есть, а небытия нет (28 В 2–4), из которого логическим образом выводит признаки бытия (неизменность, единство, вневременность и т. д.), и опровергает альтернативные варианты (возникновение бытия, его качественное разнообразие и т. д.). Зенон, опровергая возможность движения и множественности, регулярно прибегает к доказательству от противного (29 А 25, В 1–2). Парменид, вероятно, был первым философом, выдвигавшим свои идеи с опорой на логические доказательства, но изобрел ли он сам дедуктивный метод? Ведь этот метод мог быть воспринят им из математики, в которой он применялся еще со времен Фалеса.

А. Сабо утверждает, что Фалес «доказывал» свои ^теоремы эмпирическим путем, аппелируя к наглядности геометрических чертежей. Действительно, Фалес использовал метод наложения (от которого, кстати, не мог полностью избавиться и Евклид) и опирался на факты, истинность которых в ряде случаев наглядна. Но в том-то и дело, что Фалес этой наглядностью не удовлетворился, и его доказательства вовсе не сводились к ее демонстрации! Одно из них, сохранившееся у Аристотеля (Перв. Анал. 41 b 13–22), показывает нормальную процедуру логических рассуждений.



АВС — равнобедренный треугольник с вершиной в центре круга. Требуется доказать, что углы при его основании равны. *1 = *2, поскольку оба они являются углами полуокружности; АЗ=А4, поскольку два угла любого сегмента круга равны между собой. Отняв от равных углов 1 и 2 равные же углы 3 и 4, мы получим, что углы САВ и СВА равны между собой.

Заметим, что для наглядной демонстрации достаточно было просто перегнуть пополам папирусный чертеж, однако доказательство Фалеса пошло совсем другим путем.

О дедуктивном характере по крайней мере части математических выводов Фалеса свидетельствует и Евдем. В одном случае он говорит о доказательстве теоремы, в другом — что она была «найдена» Фалесом, в третьем, что тот не дал научного доказательства. У него же мы читаем: «Одному Фалес учил более абстрактным образом, а другому — более чувственным, наглядным» (фр. 133).

Перейти на страницу:

Похожие книги

1937. Трагедия Красной Армии
1937. Трагедия Красной Армии

После «разоблачения культа личности» одной из главных причин катастрофы 1941 года принято считать массовые репрессии против командного состава РККА, «обескровившие Красную Армию накануне войны». Однако в последние годы этот тезис все чаще подвергается сомнению – по мнению историков-сталинистов, «очищение» от врагов народа и заговорщиков пошло стране только на пользу: без этой жестокой, но необходимой меры у Красной Армии якобы не было шансов одолеть прежде непобедимый Вермахт.Есть ли в этих суждениях хотя бы доля истины? Что именно произошло с РККА в 1937–1938 гг.? Что спровоцировало вакханалию арестов и расстрелов? Подтверждается ли гипотеза о «военном заговоре»? Каковы были подлинные масштабы репрессий? И главное – насколько велик ущерб, нанесенный ими боеспособности Красной Армии накануне войны?В данной книге есть ответы на все эти вопросы. Этот фундаментальный труд ввел в научный оборот огромный массив рассекреченных документов из военных и чекистских архивов и впервые дал всесторонний исчерпывающий анализ сталинской «чистки» РККА. Это – первая в мире энциклопедия, посвященная трагедии Красной Армии в 1937–1938 гг. Особой заслугой автора стала публикация «Мартиролога», содержащего сведения о более чем 2000 репрессированных командирах – от маршала до лейтенанта.

Олег Федотович Сувениров , Олег Ф. Сувениров

Документальная литература / Военная история / История / Прочая документальная литература / Образование и наука / Документальное
100 великих кораблей
100 великих кораблей

«В мире есть три прекрасных зрелища: скачущая лошадь, танцующая женщина и корабль, идущий под всеми парусами», – говорил Оноре де Бальзак. «Судно – единственное человеческое творение, которое удостаивается чести получить при рождении имя собственное. Кому присваивается имя собственное в этом мире? Только тому, кто имеет собственную историю жизни, то есть существу с судьбой, имеющему характер, отличающемуся ото всего другого сущего», – заметил моряк-писатель В.В. Конецкий.Неспроста с древнейших времен и до наших дней с постройкой, наименованием и эксплуатацией кораблей и судов связано много суеверий, религиозных обрядов и традиций. Да и само плавание издавна почиталось как искусство…В очередной книге серии рассказывается о самых прославленных кораблях в истории человечества.

Андрей Николаевич Золотарев , Борис Владимирович Соломонов , Никита Анатольевич Кузнецов

Детективы / Военное дело / Военная история / История / Спецслужбы / Cпецслужбы