Итак, можно быть уверенным: математика не заимствовала дедуктивное доказательство у философии или красноречия — оно зародилось в ней самой. В то же время дедуктивный метод в отличие от
На наш взгляд, наиболее убедительный ответ на эти вопросы дал А. И. Зайцев{93}
. Одно из центральных положений его концепции состоит в том, что в Греции в силу специфических исторических условий впервые в истории человечества получили общественное одобрение все формы творчества, все формы продуктивной духовной деятельности, в том числе и лишенные непосредственно-утилитарного значения·. Только в такой атмосфере Фалес, влиятельный и богатый человек, мог, не будучи профессионалом (какими были египетские и вавилонские писцы), взяться за доказательство того, что диаметр делит круг пополам. Более того, он не просто взялся, а приобрел на этом поприще общественное признание. Традиция сохранила его имя и донесла до нас суть тех теорем, которыми он занимался (одну из них до сих пор изучают в школе как теорему Фалеса). Значит, общественная и культурная обстановка того времени была такова, что широкую известность получали авторы даже таких открытий, которые не имели практической ценности, — тем самым создавались мощные стимулы для новых поисков в этой области.Вторым важным фактором А. И. Зайцев считает особый тип соревновательности, присущий греческому обществу того времени, а именно такой, в котором главным признавалась победа, дававшая славу, а не связанные с ней материальные блага — их зачастую могли и не быть. Этот дух чистого соперничества зародился в греческой агонистике (спортивных состязаниях), а затем распространился и на сферы интеллектуального творчества — сначала на литературу, а вслед за ней на философию и науку, удесятеряя силы тех, кто стремился к истине.
Став на путь свободного, не стесненного узким практицизмом исследования, математики очень быстро убедились в том, что добиться общепризнанных и неопровержимых результатов на этом поприще можно, лишь применяя строго логическое доказательство. Эмпирический, вычислительный, метод (в пределах четырех действий арифметики), доступный грекам в то время, не обладал такой убедительной силой и не мог дать столь интересных результатов, следовательно, он был ненадежным средством в достижении успеха. Ведь сколько бы ни измерял Фалес углы при основании равнобедренного треугольника, всегда оставалась возможность возразить, что один из них больше или меньше другого. Иное дело — дедуктивное доказательство: любой скептик мог самостоятельно пройти по всем его этапам и убедиться в его. неопровержимости. История геометрии VI–V вв. до н. э. позволяет нам проследить последовательное вытеснение из нее приемов, опиравшихся в основном на чувственное восприятие, и решительную победу дедуктивного метода. Бесспорность достигнутых с его помощью выводов была настолько очевидна и притягательна, что вслед за математиками к нему обращаются и философы.
Причину «отрыва» греческой геометрий от ее эмпирической основы следует видеть именно в сочетании всех этих факторов, а не в. особых чертах греческого характера (рационализме, ясности, особой одаренности в математике), на которые так часто ссылаются. Высокий уровень вычислительных приемов вавилонян ясно показывает, что природа не обделила их математическими способностями — все дело в том, в каком направлении они использовались.
Математика Пифагора
Вернемся еще раз к вопросу о том, приписывались ли Пифагору научные открытия его учеников, — ведь, по общему мнению, это обстоятельство служит главным препятствием в реконструкции его математики. Допустим, что Ямвлих прав — в таком случае картина пифагоровой математики была бы следующей. 1) Число) открытий, приписываемых Пифагору, явно превышало бы возможности одного человека. 2) С его именем связывались бы открытия, сделанные уже после его смерти и выходящие за пределы доступных ему сведений. Известно, например, что «отцу медицины» Гиппократу Косскому приписываются сочинения, написанные в более позднее время. 3) Одни и те же открытия связывались бы и с Пифагором, и с некоторыми из его учеников. Именно так дело обстоит с «Послезаконием» — продолжением платоновских «Законов»: в разных источниках его автором называют то Платона, — то его ученика Филиппа Опунтского..
Соответствует ли реальности эта картина? Обратимся сначала к наиболее ранней части традиции — авторам IV в. до н. э.