Взглянем теперь, каков был уровень математических изысканий в начале второй половины V в. до н. э. Известно, что Демокриту (род. ок. 470 г. до н. э.) принадлежала книга «Об иррациональных линиях и телах», следовательно, к этому времени иррациональность *2 была уже доказана. Выдающийся математик Гиппократ Хиосский (ок. 440 г. до н. э.) занимался популярной тогда проблемой удвоения куба. Ей должна была предшествовать соответствующая проблема в планиметрии — удвоение квадрата, тесно связанная с открытием несоизмеримых отрезков. Из фрагмента Гиппократа о квадратуре луночек — первого дошедшего до нас образца греческого математического текста (Евд. фр. 140) — можно заключить, что он знал немалую часть положений I–IV книг Евклида. (Напомним, что «Начала» Евклида — это собрание предшествующих ему достижений в математике, а не самостоятельное произведение). Ясно также, что они были доказаны еще до него, ибо строгость доказательств самого Гиппократа была оправдана только в том случае, если положения, на которые он опирался, имели ту же логическую форму и завершенность, что и его собственные. Гиппократу же Евдем приписывает первые «Начала», в которых известные на то время теоремы и проблемы были сведены воедино и выстроены в логической последовательности. Все это демонстрирует такую зрелость тогдашней математики, которую нельзя объяснить, полагая, что дедуктивный метод проник в нее из философии только в конце первой половины V в. до н. э.
Б. Л. ван дер Варден убедительно показал, что «Началам» Гиппократа предшествовал раннепифагорейский учебник математики, содержавший основу первых четырех книг Евклида{89}
. Опираясь на эту реконструкцию, подтверждаемую свидетельствами о близости Гиппократа к пифагорейцам (42 А 5), мы вплотную подходим к пифагорейской математике первой трети V в. до н. э., т. е. к тому источнику, откуда Парменид и Зенон могли почерпнуть идею дедуктивного доказательства. Согласно традиции (28 А 1), Парменид был близок к пифагорейской среде (он фигурирует и в каталоге Аристоксена), и у нас, таким образом, есть все основания присоединиться к словам Т. Гомперца: «Система Парменида обязана своей формой математике Пифагора»{90}.В истории науки можно найти множество примеров того, как одна научная отрасль заимствует методы, оказавшиеся успешными в других областях знания. Но никто не будет перенимать метод, если его первое применение не дало ощутимых результатов на материале той области, в которой он возник. Между тем дедуктивное доказательство в философии элеатов, да и вообще в философии, отнюдь не обладает той логической убедительностью и неопровержимостью, что и в математике{91}
. Ни Пармениду, ни Зенону не удалось, собственно, ничего доказать, они лишь пытались это сделать. Уже их младшие современники атомисты отвергают идею о том, что небытия (т. е. пустоты) нет — их космос состоит именно из пустоты и движущихся в ней атомов. Не имели успеха (да и не могли иметь) и попытки Зенона опровергнуть возможность движения и множественности, хотя поднятые им проблемы во многом стимулировали развитие философии. Влияние элеатов на последующих философов объясняется глубиной и смелостью их мысли, а не дедуктивным доказательством.Разве не были восприняты некоторые идеи Гераклита, стиль рассуждений которого очень далек от доказательности? После сравнения весьма скромных успехов дедуктивного метода в философии с тем, что он дал математике, вопрос «у кого он был заимствован?» кажется риторическим.
Не более убедительна и гипотеза, связывающая зарождение дедуктивного доказательства с красноречием, будь то политическим или судебным. Дело даже не в том, что начало риторики принято относить ко второй трети V в. до н. э., а свое полное развитие она получила еще позднее, — в конце концов греки могли аргументированно доказывать свои взгляды и во времена Фалеса. Но там, где речь идет о жизненных интересах людей, логические аргументы не могут иметь решающей силы, — а именно с этой ситуацией мы сталкиваемся в народном собрании и в суде{92}
. В то время как греческая математика отталкивалась в своих доказательствах от вещей очевидных и всеми признававшихся истинными, для политической и судебной аргументации такой общей основы нет. Здесь мы имеем дело не только с фактами, но и с различием взглядов и ценностных ориентаций: то, что очевидно для аристократа, может быть совершенно неубедительным для сторонника демократии. Хорошо известно, что в Греции один и тот же человек часто писал убедительные речи и для истца, и для ответчика, а обвиняемые в тяжелых преступлениях приводили в суд жену и детей, больше надеясь смягчить судей их несчастным видом и плачем, чем своими аргументами. Трудно представить, что в этой атмосфере могло зародиться стремление строго следовать фактам и ни в чем не погрешать против логики.