Читаем Пифагор и его школа полностью

Поэт Каллимах (III в. до н. э.) упоминает об изучении треугольников и открытии. Пифагором какой-то «фигуры», в чем можно видеть намек на знаменитую теорему. Плутарх (I–II в.), приводя эпиграмму Апол-лодора, затрудняется решить, к чему именно она относится: к теореме Пифагора или к задаче на так называемое приложение площадей, которую он считает более важным открытием. Совершенно ясно, что Плутарх не располагал никакими сведениями, прямо называющими Пифагора автором этой задачи.

Неопифагореец Никомах из Герасы пишет о том, что Пифагору были известны арифметическая, геометрическая и гармоническая пропорции (Intr. II, 22) и три средних пропорциональных (Intr. II, 28). Ямвлцх к этому добавляет, что Пифагор знал еще одну пропорцию, «музыкальную». Наконец, он приписывает Пифагору открытие «дружественных» чисел, у которых сумма делителей одного равна другому, например, 220 и 284.

Вот, наверное, и все, что можно найти о математических открытиях Пифагора, остальные свидетельства мы уже приводили выше. Никто из упомянутых авторов не соединяет с его именем никаких грандиозных достижений. Собственно говоря, за пределы области, очерченной авторами IV в. до н. э., выходит лишь информация Ямвлиха о дружественных числах. Такое единодушие, пожалуй, достойно удивления, и его едва ли могут нарушить слова Прокла о пяти космических телах, особенно если учитывать, что он жил через тысячу лет после Пифагора.

Вернемся теперь к тому, о чем, уже говорилось выше: к тесной внутренней связи всех научных открытий Пифагора, которую можно считать дополнительным подтверждением достоверности собранных выше свидетельств.

Одним из важных связующих звеньев между арифметикой, геометрией и гармоникой была теория пропорций. Пифагору, безусловно, были известны три средние пропорциональные: арифметическое c = a+b/2, геометрическое — с = *ab и гармоническое — c = 2ab/a+b, а также «музыкальная» пропорция — a: a+b/2 = 2ab/a+b: b, непосредственно связанная с его акустическим экспериментом.

Интересное подтверждение принадлежности Пифагору теории пропорций нашел немецкий ученый; Г. Френкель{99}. Он показал, что некоторые идеи Гераклита Эфесского выражены в форме геометрической пропорции. Например: бог/человек==человек/ребенок (22 В 79); бог/человек=человек/0безьяна (22 В 82–83); пьяный человек/ребенок = ребенок/трезвый чело-век (22 В 117). Поскольку до Пифагора пропорции были неизвестны, а сам Гераклит математикой не занимался, он, по всей вероятности, воспринял эту идею у пифагорейцев.

Арифметическую теорию пропорций, приложимую к соизмеримым величинам, Пифагор скорее всего использовал и при доказательстве своей знаменитой теоремы. Ход этого доказательства, согласно реконструкции крупнейшего исследователя античной математики Т. Хита{100}, таков. Исходя из того, что в подобных треугольниках ABC, ABD и ACD стороны пропорциональны, получаем следующие равенства:


AB/ВС = BD/AB

следовательно, 2 = ВС * BD;

AC/BC = DC/AC

следовательно, AC2 = BC * DC.

Складывая их, мы получаем: АВ2+AC2 = BC(BD+DC), или AB2+AC2 = BC2.

У Евклида (I, 47) приводится другое доказательство этой теоремы, принадлежащее ему самому.

Следующий раздел Пифагоровой математики — учение о четном и нечетном, положившее начало теории чисел. По мнению большинства историков греческой математики, оно сохранилось у Евклида почти в неизменном виде (IX, 21–34). Приведем в качестве примера первые пять положений этого учения (в сокращенных формулировках):


21) сумма четных чисел является четной;

22) сумма четного количества нечетных чисел четна;

23) сумма нечетного количества нечетных чисел нечетна;

24) четыре минус четное есть четное;

25) четное минус нечетное есть нечетное.


Доказательства этих положений опираются на определения VII книги Евклида и в строго логическом порядке следуют друг за другом. Хотя Евклид иногда представлял числа в виде отрезков (впрочем, это было скорее исключением, чем правилом), а пифагорейцы пользовались счетными камешками (псефами), суть дела от этого совершенно не меняется. Сохраненные Евклидом доказательства легко иллюстрируются при помощи псефов. Абсолютно неправдоподобно, чтобы Пифагор выдвигал предложения без доказательств (которые были добавлены кем-то позднее) — большинство положений этого учения очевидны любому, кто знаком с элементарными вычислениями. Аристотель и Аристоксен не могли ставить в заслугу Пифагору открытие, или «иллюстрацию», того, что сумма четных чисел всегда будет четной, но лишь доказательство этого и сходных с ним положений. Точно так же, как Фалес в геометрии, Пифагор начал в арифметике с простейших фактов, относительно которых ранее не ощущалось потребности в доказательстве.

Перейти на страницу:

Похожие книги

1937. Трагедия Красной Армии
1937. Трагедия Красной Армии

После «разоблачения культа личности» одной из главных причин катастрофы 1941 года принято считать массовые репрессии против командного состава РККА, «обескровившие Красную Армию накануне войны». Однако в последние годы этот тезис все чаще подвергается сомнению – по мнению историков-сталинистов, «очищение» от врагов народа и заговорщиков пошло стране только на пользу: без этой жестокой, но необходимой меры у Красной Армии якобы не было шансов одолеть прежде непобедимый Вермахт.Есть ли в этих суждениях хотя бы доля истины? Что именно произошло с РККА в 1937–1938 гг.? Что спровоцировало вакханалию арестов и расстрелов? Подтверждается ли гипотеза о «военном заговоре»? Каковы были подлинные масштабы репрессий? И главное – насколько велик ущерб, нанесенный ими боеспособности Красной Армии накануне войны?В данной книге есть ответы на все эти вопросы. Этот фундаментальный труд ввел в научный оборот огромный массив рассекреченных документов из военных и чекистских архивов и впервые дал всесторонний исчерпывающий анализ сталинской «чистки» РККА. Это – первая в мире энциклопедия, посвященная трагедии Красной Армии в 1937–1938 гг. Особой заслугой автора стала публикация «Мартиролога», содержащего сведения о более чем 2000 репрессированных командирах – от маршала до лейтенанта.

Олег Федотович Сувениров , Олег Ф. Сувениров

Документальная литература / Военная история / История / Прочая документальная литература / Образование и наука / Документальное
100 великих кораблей
100 великих кораблей

«В мире есть три прекрасных зрелища: скачущая лошадь, танцующая женщина и корабль, идущий под всеми парусами», – говорил Оноре де Бальзак. «Судно – единственное человеческое творение, которое удостаивается чести получить при рождении имя собственное. Кому присваивается имя собственное в этом мире? Только тому, кто имеет собственную историю жизни, то есть существу с судьбой, имеющему характер, отличающемуся ото всего другого сущего», – заметил моряк-писатель В.В. Конецкий.Неспроста с древнейших времен и до наших дней с постройкой, наименованием и эксплуатацией кораблей и судов связано много суеверий, религиозных обрядов и традиций. Да и само плавание издавна почиталось как искусство…В очередной книге серии рассказывается о самых прославленных кораблях в истории человечества.

Андрей Николаевич Золотарев , Борис Владимирович Соломонов , Никита Анатольевич Кузнецов

Детективы / Военное дело / Военная история / История / Спецслужбы / Cпецслужбы