Насколько быстро он продвинулся в разработке дедуктивного метода, показывает следующий факт: четыре предложения этого учения (IX, 30–31, 33–34) доказываются от противного. При этом они совершенно естественно следуют из доказываемых прямым образом, ничем не отличаясь от них по сложности. Так, например, для доказательства предложений 33 и 34 не требуется ничего, кроме 8 и 9 определений VII книги. Приведем одно из них: «Если число имеет нечетную половину, то оно будет только четно-нечетным» (т. е. таким, которое измеряется четным числом нечетное число раз — опр. 9).
«Пусть четное число А имеет нечетную половину; я утверждаю, что А будет только, четно-нечетным. Теперь, что оно будет четно-нечетным, очевидно, ибо его половина, будучи нечетной, измеряет его четное число раз (опр. 9). Вот я утверждаю, что и только. Действительно, если А будет и четно-четным, то, оно измерится четным по числу единиц в четном числе (опр. 8), так что и половина его измерится четным числом, будучи нечетной; это же нелепо. Значит, А будет только четно-нечетным, что и требовалось доказать» (IX, 33).
Было бы крайне странно полагать, что первоначальное прямое доказательство было заменено косвенным — греческая математика, систематически избегала таких операций. Словом, все говорит за то, что это учение дошло, до нас в своем, первоначальном виде. Отсюда следуют два важных «вывода: 1) наглядность математических фактов, и их дедуктивное доказательство вовсе, не находятся в непримиримом противоречии;
2) доказательство от противного родилось внутри математики, причем на самом раннем этапе ее развития, и лишь затем элеаты попытались применить его в философии.
Другой пример очень раннего применения косвенного доказательства — теорема о равенстве сторон треугольника, стягивающих равные углы (Евкл. I, 6), обратная доказанной Налесом теореме о равенстве углов в равнобедренном треугольнике. Она относится к реконструированному ван дер Верденом ранцепифагорейскому учебнику математики и была, вероятно, доказана либо в поколении Пифагора, либо в следующем за ним{101}
.Своеобразным связующим звеном между геометрией и арифметикой была теория фигурных чисел, устанавливавшая взаимосвязь чисел с геометрическими фигурами. Хотя прямых свидетельств, относящих ее к Пифагору, нет, многое говорит в пользу его авторства.
Построение фигурных чисел (треугольных, квадратных, прямоугольных и т. д.) с помощью гномона (угольника) представляет собой суммирование простых арифметических рядов, например, четных и нечетных чисел:
1+3+5+..
2+4+6+.. +
По своему характеру оно принадлежит к тому же типу раннепифагорейской «псефической» арифметики, что и теория четных и нечетных чисел. В то же время это учение явно предшествует развитому в первой половине V в. до н. э. методу приложения площадей (II книга Евклида), в котором также присутствуют построения с помощью гномона. Наконец, принято считать, что метод определения Пифагоровых троек, который приписывают Пифагору, был найден им как раз при построении квадратных чисел.
Основные положения теории фигурных чисел не попали в собрание Евклида, они даются в популярней форме в книгах Никомаха, Тебнй Смирнского и Ямвлиха. Никомах не приводит в своей книге никаких доказательств, тем не менее очевидно, что они содержались в том материале, который он использовал и к которому практически ничего не добавил. Это следует хотя бы из предложений, совпадающих
Требуется доказать, что прямоугольное число — это удвоенное треугольное число. По определению, прямоугольное число — это сумма ряда четных чисел, начиная с 2, а треугольное число — это сумма ряда натуральных чисел, начиная с 1. Поскольку последовательный ряд четных чисел представляет собой удвоение ряда натуральных чисел, очевидно, что прямоугольное число, является удвоением треугольным числом.
Доказательство легко иллюстрируется при помощи псефов:
От построения треугольных, и квадратных чисел можно перейти к стереометрической задаче и попытаться построить тело, ограниченное равносторонними треугольниками и квадратами, — в таком случае получится тетраэдр и куб. При исследовании свойств квадратных чисел был вероятнее всего, найден и метод определения Пифагоровых троек — длин сторон прямоугольного треугольника. Его можно представить следующим образом. Прибавляя к квадрату гномон, мы получаем следующий квадрат, следовательно, нужно найти такой гномон, который сам был бы квадратным числом:
Пусть