Классическое доказательство иррациональности
Дан квадрат
Какую бы реконструкцию первоначального доказательства иррациональности *2 мы ни приняли, остается очевидным, что это открытие явилось важнейшим этапом становления греческой математики. «Открытие иррациональных чисел поставило проблему, ставшую центральной для древнегреческой математики»{109}
. Над решением этой проблемы плодотворно работали такие выдающиеся математики, как Гиппократ Хиосский, Феодор, Теэтет, Евдокс. Их результаты были собраны и обработаны в «Началах» Евклида, ставших образцом для всей последующей математики.В середине нашего века значение открытия несоизмеримых велдчин многие были склонны даже переоценивать, полагая, что оно привело к так называемому кризису оснований в греческой математике — по аналогии с тем, что произошло, в математике, на рубеже XIX–XX вв.{110}
. Исследования последних десятилетий показали, что аналогия эта была неудачной: никакого «кризиса оснований» в математике V в. до н. э. не было{111}. Столь, же мало подтверждений находит и идея о том, что открытие Гиппаса нанесло «смертельный удар» по пифагорейской догме «все есть число». К этому вопросу мы еще вернемся в главе о пифагорейской философии.Пифагорейская математика
первой половины V в. до н. э
Представление о том, чего достигли пифагорейцы в математике до начала деятельности Гиппократа Хиосского, можно получить, сопоставляя свидетельства Евдема с тем, что вытекает из фрагмента сочинения самого Гиппократа.
Часть сообщений Евдема сохранилась под его собственным именем. Так, например, Прокл отмечал, что Евдем приписывал пифагорейцам теорему о равенстве углов треугольника двум прямым (Евкл. I, 32) и задачи на приложение площадей, которые, трактуются в I и II книгах Евклида (фр. 136, 137). К Евдему восходит и ряд других свидетельств, сохранившихся у Прокла, Паппа Александрийского г
и в схолиях; к «Началам» Евклида. Ведь именно Евдем занимался историей математики незадолго до того, как были написаны Евклидовы «Начала» и располагал обширными сведениями, позже утраченными.К кому, например, может восходить сообщение о том, что пифагорейцы знали следующую теорему: плоскость вокруг точки могут заполнить только следующие правильные многоугольники: шесть треугольников, четыре квадрата и три шестиугольника? Теоремы этой у Евклида нет, а Евдем, живший до него, вполне мог о ней знать. Ему же <мы обязаны и некоторыми другими ценными сведениями, например, о том; что пифагорейцам принадлежит вся IV книга Евклида, рассматривающая отношения правильных. многоугольников. и круга, или о том, что три правильных многогранника (тетраэдр, куб и додекаэдр) построили пифагорейцы, а октаэдр и икосаэдр — Теэтет.