Читаем Путеводитель по лжи полностью

Вы могли бы подсчитать количество вечеров в году, когда температура опускается сильно ниже нуля, – скажем, в вашем регионе 36 – и потом сказать, что вероятность заморозков сегодня вечером будет 36/365, приблизительно 10 %, или 0,1, но при этом вы не учитываете зависимости. Если вы скажете, что вероятность того, что в течение зимы будет два морозных вечера подряд, равна 0,1 × 0,1 = 0,01 (согласно правилу умножения), то недооцените вероятность, потому что события двух вечеров подряд не независимы. На завтрашнюю погоду сильно влияет сегодняшняя.

Вероятность того, что какое-то событие произойдет, также может оказаться под влиянием конкретного факта, который вы сейчас изучаете. На вероятность того, что вечером будет морозно, очевидно влияет регион, о котором вы говорите. И эта вероятность выше на 44-й параллели, нежели на десятой. Шанс найти кого-то выше двух метров возрастает, если искать такого человека среди баскетболистов, а не в таверне, куда часто забегают жокеи. Таким образом, подгруппа людей или вещей, которую вы изучаете в данный момент, сильно влияет на вашу оценку вероятности.

Условные вероятности

Часто статистические данные вводят нас в заблуждение, потому что мы смотрим на показатели целой группы случайных людей, вместо того чтобы смотреть на подгруппу. Какова вероятность того, что у вас пневмония? Не очень высокая. Но если нам будет известно больше о вас и конкретно о вашем случае, вероятность может быть выше или ниже. Это называется «условные вероятности».

Рассмотрим два разных типа вопросов:

1. Какова вероятность того, что у случайно выбранного для опроса человека будет пневмония?

2. Какова вероятность того, что она будет у человека, не выбранного случайным образом для опроса, но проявляющего три симптома (температура, боль в мышцах, заложенность в груди)?

Второй вопрос предполагает условную вероятность. Она носит такое название, потому что мы рассматриваем не всю популяцию, а только тех людей, для которых выполняется определенное условие. Не прибегая к цифрам, мы можем угадать, что вероятность пневмонии выше во втором случае. Конечно, мы можем поставить вопрос таким образом, чтобы вероятность пневмонии была ниже у человека, которого выбрали не случайно:

Какова вероятность того, что мы найдем пневмонию у случайно выбранного человека, чьи анализы три раза подряд не подтвердили заболевание, у которого особенно крепкая иммунная система и который минуту назад финишировал первым в Нью-Йоркском марафоне?

Тот же принцип будет и в следующем случае: вероятность того, что вы заработаете рак легких, не может не быть связана с историей вашей семьи. Вероятность того, что официант принесет вам кетчуп, не может не быть связана с вашим заказом. Можно подсчитать вероятность того, что любой случайно выбранный человек в ближайшие десять лет заболеет раком легких или что официант принесет кетчуп клиентам за определенным столиком, приняв в расчет остальные заказы. Но нам повезло, и мы знаем о том, как эти события связаны с другими. Это позволяет нам сузить рассматриваемую совокупность и получить более точную оценку. Например, если у обоих ваших родителей был рак легких, вы, возможно, захотите подсчитать вероятность заболеть тем же; тогда просто посмотрите на других людей в избранной группе – тех, у чьих родителей был рак. Если у ваших родителей его не было, вы захотите посмотреть на релевантную группу людей, у которых в анамнезе нет таких историй (и у вас, вероятно, получатся совсем иные результаты). Если вы хотите узнать вероятность, принесет ли официант вам кетчуп, вы можете посмотреть на столики, за которыми люди заказали гамбургеры и картошку фри, а не на те, за которыми люди едят тартар из тунца или яблочный пирог.

Перейти на страницу:

Похожие книги