I глава ФА фактически начинается со знаменитой дефиниции числа из VII книги «Элементов» Эвклида. Приведем и её (в передаче Гуссерля): число – это множество элементов (ФА, S. 148–9
). Можно было бы сразу сказать, что «дефиниция» понятна лишь тогда, когда ясно, что такое «элементы» и что такое «множество». И это тоже служило бы на пользу полемики Гуссерля против преувеличенных претензий тех, кто, подобно Фреге, хотел бы однозначно построить математику и логику на чисто дефинитивном базисе. (Кстати, как уместно разъяснил Дж. Миллер, – G. Miller, op. cit., P. 41 – Гуссерль, отвергая эти претензии, совсем не противится попыткам формулирования дефиниций, скажем, дефиниции числа.) Ибо какая-то дефиниция все же была нужна математике – и та, что предложил Эвклид, впоследствии закрепилась. В последующей истории и математика, и философия предлагали свои определения числа. В логике, скажем, числу давалась логическая формулировка, но и здесь содержалась ссылка на другое понятие, в свою очередь требующее разъяснения и дефинирования (у Фреге: число – это то, что «Что касается начальных рассуждений Гуссерля, то он, все же отклоняя эвклидово определение (и какие-либо другие дефиниции), дает свое
Мы как будто бы должны были освоиться с тем, что – согласно Гуссерлю, опирающемуся на суждения других математиков, в основе всех понятий числового ряда лежит понятие Anzahl, натурального (кардинального) числа. Его он и хочет определить для начала. И вдруг в I главе под названием «Возникновение понятия множественности (Vielheit) посредством понятия коллективного объединения» мы
«Общеизвестная дефиниция понятия числа – да будет нам позволено, в соответствии с общераспространенным словоупотреблением, сокращенно назвать числом натуральное число – гласит: число (Anzahl) – это множество единиц. Дефиниция эта то и дело используется со времен Эвклида (начало VII книги “Элементов”). Вместо “множественности” (Vielheit) используются понятия “большинство” (Mehrheit), “совокупность” (Inbegriff), “агрегат” (Aggregat), множество (Menge) и т. д., а значит, используются имена, которые имеют сходное или почти тождественное значение, хотя и не без заметных нюансов» (146–13
). Для начала автор ФА предпочитает не вдаваться во все эти нюансы, выбрав для последующего рассуждения именно понятия «Vielheit», множественность.Здесь нужно пояснить проблемы, связанные с его переводом на русский язык. Обычный словарь дает его значения: множество, большое количество, многочисленность. Но в нашем контексте приходится принимать в расчет то, что другие понятия того же ряда, употребляемые Гуссерлем в ФА, например, Menge (в словаре: множество, огромное количество) переводятся на русский теми же словами. И надо с самого начала дифференцировать их при переводе или употреблении на русском языке. Предпочесть перевод «Viel