Читаем Различие и Повторение полностью

Стихии потенцирования соответствует принцип полного определения. Нельзя спутать полное определение с взаимоопределени-ем. Последнее касается дифференциальных отношений и их уровней, их разновидностей в Идее, соответствующих различным формам. Полное определение касается величин отношения, то есть создания формы или распределения характеризующих ее особых точек, например, когда отношение становится нулевым, или беско-

нечным, или 0/0. Речь, действительно, идет о полном определении частей объекта; теперь в объекте, как и в кривой, следует найти элементы, представляющие предварительно определенное “линейное” отношение. Только здесь форма рядов в потенциальности обретает весь свой смысл; становится даже необходимым представить соотносящееся как сумму. Ведь ряд степеней с численными коэффициентами окружает особую точку, только одну одновременно. Интерес и необходимость формы рядов проявляется в множественности предполагаемых ею рядов при их зависимости по отношению к особым точкам; в способе перехода от одной части объекта, где функция представлена рядом, к другой, где она выражается в другом ряду, независимо от того, сходятся ряды, или продолжаются, или, наоборот, расходятся. Так же, как определимость переходила во взаимоопределение, она переходит в полное определение: все три образуют фигуру достаточного основания в тройной стихии: количественности, качественности и потенциальности. Идея — конкретное универсальное, где объем и содержание понятий неразрывны не только в силу включения разнообразия и множественности, но и особенного в каждой из своих разновидностей. Она предполагает распределение примечательных и особых точек; все ее отличие, то есть отчетливое как признак идеи, как раз и состоит в том, чтобы распределять обычное и примечательное, особенное и упорядоченное, а также распространить особенное на регулярные точки, вплоть до приближения к другой сингулярности. По ту сторону единичного, по ту сторону частного, как и общего, нет абстрактного универсального: само особенное “доединично”.

***

Вопрос об интерпретации дифференциального исчисления, несомненно, предстал В следующем виде: реальны или фиктивны бесконечно малые? Но с самого начала речь шла и о другом: связана ли судьба исчисления с бесконечно малыми, не должно ли оно обрести строгий статус с точки зрения конечного представления? Истинной границей, определяющей современную математику, является не само исчисление, а другие открытия, например, открытия теории множеств, которая, даже нуждаясь в аксиоме бесконечности, тем не менее требует строго конечной интерпретации исчисления. Действительно, известно, что понятие предела утратило свой форономический характер и включает только статические рассмотрения: что переменчивость больше не рассматривается как постепенный переход через все значения в интервале, означая лишь асимптотическое приближение значения в этом интервале; что производная и интеграл стали скорее порядковыми, чем количественными понятиями; что дифференциал, наконец, означает только величину, которую оставляют неопределенной, чтобы сделать ее при необходимости меньшей заданного числа. Вот здесь и родился структурализм, в то время как умирали генетические и динамические амбиции вычисления. Когда говорят о “метафизике” вычисления, речь как раз и идет об этой альтернативе между бесконечным и конечным представлениями. К тому же эта альтернатива, а следовательно, метафизика в высшей степени присущи технике самого вычисления. Вот поэтому с самого начала был поднят метафизический вопрос: почему дифференциалами технически пренебрегают и почему они должны исчезнуть в результате? Очевидно, что ссылка здесь на бесконечно малое и бесконечно малый характера погрешности (если есть “погрешность”) лишена смысла и предполагает бесконечное представление. Строгий ответ был дан Карно в его известных Размышлениях о метафизике исчисления бесконечно малых, но как раз с точки зрения конечной интерпретации: дифференциальные уравнения являются просто “вспомогательными”, выражающими условия задачи, которой отвечает искомое уравнение; но при этом происходит точная компенсация погрешностей, которая не оставляет дифференциалам места в результате, поскольку последний может быть установлен только для фиксированных или конечных величин.

Перейти на страницу:

Похожие книги