Читаем Различие и Повторение полностью

Следует говорить скорее о диалектике вычисления, чем о его метафизике. Под диалектикой мы ни в коей мере не подразумеваем некую циркуляцию противоположных представлений, приводящую их к тождественности понятия, но элемент задачи, отличный от собственно математического элемента решений. Согласно общим тезисам Лотмана, задача имеет три аспекта: ее сущностное отличие отрешения; ее трансцендентность относительно решений, порожденных ею исходя из собственных определяющих условий; имманентность задачи перекрывающим ее решениям, так как задача бывает решена тем лучше, чем лучше она определяется. Таким образом, идеальные связи, образующие проблемную (диалектическую) Идею, воплощаются здесь в реальных отношениях, установленных математическими теориями и данных как решения задач. Мы видели, как все эти аспекты, три аспекта присутствуют в дифференциальном исчислении; решения являются здесь дискретными, соотносимыми с дифференциальными уравнениями, они рождаются из мыслительной непрерывности, связанной с условиями задачи. Однако следует уточнить важный момент. Дифференциальное исчисление, несомненно, принадлежит математике, это полностью математический инструмент. Трудно увидеть в нем платоновское свидетельство диалектики, превосходящей математику. По крайней мере, это было бы трудно, если бы аспект имманентности задачи не давал нам верного объяснения. Задачи всегда диалектичны, диалектика не имеет другого смысла, как не имеют его и задачи. Математическими (или физическими, биологическими, психическими, социологическими) являются решения. Но, действительно, с одной стороны, сущность решений отсылает к различным порядкам задач в самой диалектике; а с другой стороны, задачи, в силу их сущностной трансцендентной имманентности, технически выражаются в той области решений, которые они порождают в силу диалектического характера. Как прямая и окружность продублированы линейкой и компасом, каждая диалектическая проблема продублирована тем символическим полем, в котором выражается. Поэтому следует сказать, что есть задачи математические, физические, биологические, психические, социологические, хотя любая задача сущностно диалектична и нет иной проблемы, кроме диалектической. Итак, в математике содержится не только решение задач; в ней содержится также выражение задач относительно определяемого им поля решаемости; они определяют его в силу самого своего диалектического характера. Вот почему дифференциальное исчисление полностью относится к математике и одновременно обретает смысл в открытии диалектики, превосходящей математику.

Перейти на страницу:

Похожие книги