Мы уже говорили, что атомы каждого элемента существуют только со вполне конкретными конфигурациями своих электронов. Теперь мы видим математическую подоплеку: уравнение Шрёдингера для атома в стационарном состоянии допускает только вполне конкретный набор решений. В частности, решение для состояния с минимальной (первой в списке) энергией единственно{40}
.Сформулировав свое уравнение и поняв, как оно решается для простой стационарной системы – атома водорода, Шрёдингер сумел теоретически пройти путь от волновых функций, в которых ничего дискретного нет, к дискретности, которая играет определяющую роль в устройстве мира. (При этом он уложился в рождественские каникулы в горах, куда отправлялся в конце 1925 г., видимо, без ярко выраженного намерения произвести переворот в науке; однако уже в начале пребывания там он сетовал в письмах на свое «недостаточное знание математики».) Абстрактный формализм и выполняемые на бумаге математические преобразования позволили объяснить весь список разрешенных значений энергии для атома водорода – что было важнейшим первым достижением в последовавшей затем череде успешных применений уравнения Шрёдингера.
Правда, сам автор уравнения первое время после его создания и триумфальной проверки рассчитывал на большее: он надеялся описать вообще все квантовые объекты, начиная с электрона, как «сгустки» волновой функции. Этот план полностью провалился, как мы уже кратко упомянули в главе 3, а теперь можем рассказать с большей точностью. Причин было несколько. В первую очередь, волновая функция не может описывать квантовые объекты в системе по одному, а может – только всю систему целиком и поэтому не позволяет ответить на вопрос о том, что происходит (или даже «может произойти») в какой-то
К этому стоит добавить, что волновая функция еще и
Еще одна причина, по которой не удался план Шрёдингера описывать материю как «сгустки» волновой функции, носит более технический характер и, собственно говоря, представляет собой препятствие в попытке «выкрутиться» – произвести с волновой функцией математические действия, каким-то разумным образом оставляющие зависимость только от одной точки (правда, так получается уже не волновая функция, а математически совсем другой объект). После этого появляется надежда сказать: «Вот, если получилось что-то, отличное от нуля вблизи точки X, но равное нулю вдали от нее, то, значит, в точке X и находится квантовый объект, и он построен из волновой функции». Идея не сработала, потому что в силу самого уравнения Шрёдингера пространственный размер области, где «что-то», построенное таким способом, отлично от нуля, непрерывно увеличивается. Объекты, описываемые подобным образом, должны со временем широко расползаться по пространству – достаточно широко, чтобы вступить в явное противоречие с опытными данными.
Тем не менее уравнение Шрёдингера стало универсальным инструментом квантовой механики. Ключевая догадка, воплощенная в нем, – в том, что управляющая роль принадлежит энергии. А энергия – очень универсальное понятие, и в различных ситуациях надо просто правильно учесть все имеющиеся в задаче виды энергии и превратить каждый в преобразователь волновой функции.
Правда, это последнее может потребовать изобретательности, как это было в случае спина. Из-за наличия спина электрон становится магнитом; а всякий магнит получает добавку к своей энергии, когда находится в магнитном поле. В случае электрона разговаривает с магнитным полем «упрямая стрелка» из главы 7; используя ее, несложно записать выражение для энергии, практически копируя то, которое работает для обычных магнитов. Но далее необходимо понять, каким же способом ее вклад в энергию дополнительно «толкает» волновую функцию. Как это организовать, придумал Паули в 1927 г. Он использовал спиноры, включив их в волновую функцию. В свете нашего знакомства со спинорами в предыдущих главах это самый короткий способ сказать, в чем состояло изобретение Паули, но говорить так не очень хорошо, потому что сам Паули не просто «использовал», но, для начала,