В практическом плане, кстати, намного более популярны не запутанные электроны, а запутанные (тоже по спину) фотоны. Со спином фотонов мы встречаемся в обычной жизни, потому что он проявляет себя как поляризация света; для нее есть две опорные возможности, например «горизонтальная» и «вертикальная» поляризации. Для управления поляризацией имеются разнообразные оптические устройства. Создаются же запутанные фотоны примерно по следующей схеме: в специально подобранном атоме электрон поглощает «затравочный» фотон с определенной энергией/длиной волны, в результате чего он (электрон) занимает состояние с более высокой энергией, но очень скоро отдает избыток энергии – снова в виде света, но только в виде не одного фотона, а двух! Сначала электрон переходит в состояние с промежуточной энергией, а уже оттуда быстро возвращается в свое исходное. Каждое изменение состояния сопровождается излучением фотона. В результате картина получается такой: вещество (обычно это кристалл) поглощает фотон определенной энергии и возвращает два фотона примерно «половинной» энергии каждый. Существенная дополнительная подробность состоит в том, каковы «вращательные» характеристики задействованных здесь состояний электрона в атоме. В главе 4 мы говорили, что в каждом состоянии электрон в атоме обзаводится определенными атрибутами вращения; сейчас важно, что спин излучаемых фотонов участвует в общем балансе сохранения связанных с вращением величин. Состояния выбраны так, что суммарный спин излученных фотонов равен нулю. По отдельности, однако, спины больше ничем не контролируются. Это и означает запутанность по спину.
Запутанное состояние двух электронов создать технически сложнее, но тоже возможно (например, интересным методом «переноса запутанности»: каждый из электронов излучает по фотону таким образом, что запутывается с этим фотоном, а далее специальная процедура измерения, которой подвергаются два фотона, реорганизует запутанность так, что она «высаживается» на электроны). Технологические усовершенствования продолжают появляться, и запутывать удается все более крупные молекулы, но в фокусе нашего внимания сейчас не технологии (которые могли бы стать предметом отдельного рассказа), а принципиальные моменты; мы будем в основном представлять себе электроны.
Запутанное (точнее, максимально запутанное) по спину состояние двух электронов – это комбинация двух частей:
«(спин вверх, спин вниз) минус (спин вниз, спин вверх)».
В каждой скобке сначала указано спиновое состояние электрона № 1, а затем – электрона № 2.
Глядя на это состояние двух электронов, о спине электрона № 1 нельзя сказать, направлен ли он вверх или вниз; волновая функция содержит обе эти возможности. В точности то же верно и в отношении электрона № 2. Но при этом спины двух электронов коррелируют: в каждой из двух частей волновой функции их спины противоположны.
Это очень неклассическая ситуация: организовать что-либо подобное с обычными предметами невозможно. Развлеките гостей нехитрым фокусом: в двух коробках лежит по игральной кости; открывая коробки, они обнаружат, что две кости смотрят вверх противоположными гранями: если на одной 1, то на другой 6, если на одной 2, то на другой 5, а если на одной 3, то на другой 4. При подготовке «фокуса» вам придется
В квантовом же мире в действительности выполнено даже нечто намного более впечатляющее, чем с первого взгляда видно из приведенной выше записи запутанного состояния. Оттуда может показаться, что неопределенность в спинах включает только выбор между «вверх» и «вниз». Однако неопределенность в полной мере распространяется и на направление! Математика спиноров сообщает, что приведенное выше максимально запутанное состояние двух электронов можно эквивалентно выразить многими другими способами, для начала – как
«(спин влево, спин вправо) минус (спин вправо, спин влево)».
Здесь записано математически