Читаем Светлые века. Путешествие в мир средневековой науки полностью

Задолго до Птолемея астрономов неотступно преследовала проблема – загадочное движение планет. Нетрудно понять, почему эта небесная аномалия притягивала к себе столько внимания. Как нам уже хорошо известно, Солнце медленно движется вдоль эклиптики, завершая круг за год. Но планеты ведут себя иначе. Они не только отклоняются от эклиптики в разные стороны, иногда они будто бы стоят на месте или движутся назад – на протяжении недель или даже месяцев. Когда 29 июля 1392 года Марс прошел на несколько градусов севернее Альдебарана, планета двигалась, как ей и положено, каждую неделю увеличивая свою долготу немногим более чем на 4 градуса: примерно на ширину трех пальцев. Но когда она пересекла эклиптику и вошла в знак Близнецов, ее траектория повернула круче к северу, а скорость начала замедляться. Всю первую неделю ноября Марс стоял неподвижно около звезды на боку более южного из двух братьев Близнецов[462]. Затем он медленно начал двигаться в обратном направлении. В середине декабря, когда Марс стоял точно напротив Солнца в самой удаленной от светила точке эклиптики, он был ярче и крупнее всего. Затем, в конце января 1393 года, он снова остановился. А потом возобновил движение по своей обычной траектории на запад, повторив свой проход по Близнецам и постепенно смещаясь на юг все ближе к линии эклиптики.

Древние астрономы прилагали массу усилий, придумывая геометрические модели, объясняющие такие удивительные противоречия, контрастирующие с обычной ясностью небесной гармонии. Аристотель выделял объяснение, разработанное его современником Евдоксом[463]. Евдокс предположил, что каждая из планет движется в системе из четырех концентрических сфер, расположенных одна внутри другой (подобно русской матрешке), которые под разными углами вращаются вокруг Земли. Для объяснения движения таких планет, как Марс, принималось, что первая их сфера каждый день восходит и заходит вместе с остальными небесами; вторая сфера обеспечивает движение по эклиптике вместе с Солнцем и другими планетами; третья отвечает за возвратно-поступательные колебания к северу и югу от эклиптики; а четвертая создает характерное попятное движение.

Это был соблазнительный выход. Философам пришлось по нраву, как четко Евдоксу удалось воссоздать прямое и попятное движение с помощью всего-навсего гомоцентрических сфер. Но у этой модели были и очевидные недостатки. Она не объясняла, например, резкого изменения видимых размеров планет. Видимый диаметр как Марса, так и Венеры в особенности мог увеличиваться более чем в четыре раза во время попятной фазы их циклов[464].

Смоделировать такие изменения в размерах можно, если использовать окружность, центр которой скользит по другой окружности, – эпицикл. Греческий астроном Аполлоний, живший в III веке до н. э., доказал, что с помощью эпицикла можно так же успешно объяснить изменения в размерах и скорости, как и используя круг со смещенным центром. О работе Аполлония нам известно исключительно из текста, написанного Птолемеем почти 400 лет спустя. Но и этого достаточно, чтобы утверждать, что Аполлонию удалось показать: движение планеты по эпициклу, который обращается вокруг Земли, способно создать попятное движение. Планета движется по малому кругу – эпициклу, а центр эпицикла движется по большему «несущему» кругу (деференту) (рис. 7.8). От относительных размеров эпицикла и деферента зависит размер петель попятного движения.


Рис. 7.8. Модель деферент-эпицикл-эквант, описывающая движение отдельной планеты. С точки зрения наблюдателя, который находится на Земле (Т), планета движется попятно и кажется больше, когда находится на внутренней («нижней») части эпицикла. Эпицикл движется вдоль деферента с постоянной скоростью относительно точки экванта (Е). Точка экванта и центр деферента (D) удалены от Земли по направлению к апогею (А), т. е. вдоль линии апсид. Так как «голова Овна» расположена на практически бесконечном удалении, она находится под одним и тем же углом как к Е, так и к Т. (Чтобы создать попятное движение, эпицикл должен быть подходящего размера: у Луны тоже есть эпицикл, но она никогда не движется попятно.)


Перейти на страницу:

Похожие книги

Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники