Читаем Тайна за тремя стенами. Пифагор. Теорема Пифагора полностью

Самое значительное открытие, которое традиция приписывает Пифагору, — это описание прямоугольного треугольника, устанавливающее соотношение между его катетами и гипотенузой. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов длин двух других сторон треугольника (см. рисунок 1). Определение теоремы звучит как «сумма квадратов катетов равна квадрату гипотенузы», а ее алгебраическое выражение выглядит так:

a2 + b2 = c2.

Эту теорему можно сформулировать и более строгим образом, следуя современным математическим нормам. Ее определение в специальных геометрических терминах выражается следующим образом (см. рисунок 2):

Дан треугольник ABC; угол С прямой (то есть треугольник является прямоугольным), если площадь квадрата, построенного на стороне с, противоположной углу С, равна сумме площадей квадратов, построенных на двух других сторонах a и b: a2 + b2 = c2.



Из уравнения а2 + b2 = с2 следует, что

а = √(с2-b2),

b = √(с22),

c = √(a2 + b2).

Во времена Пифагора эта теорема служила для определения перпендикулярности. Ведь в прямоугольном треугольнике «квадрат гипотенузы равен сумме квадратов катетов», потому что катеты перпендикулярны друг другу. С другой стороны, если на практике соотношение сторон именно таково (а2 + b2 = с2), отсюда можно вывести, что данный треугольник — прямоугольный.

В наши дни угольник и копировальная бумага, которые применяются для построения технических чертежей, позволяют проводить не только перпендикулярные отрезки, но и комбинировать углы их пересечения из углов в 30°, 45°, 60° и 90°. В современном мире при черчении с применением плотницкого или столярного угольника тем же инструментом можно проверять перпендикулярность линий. А в Древней Греции архитектор, желающий проверить, перпендикулярны ли друг другу стены, мог использовать теорему Пифагора. Инструментом для измерения длины в то время служила веревка с завязанными на равных расстояниях узелками. Этой веревкой архитектор отмерял 3 единицы по одной стене и 4 по другой, после чего он мог определить, что стены перпендикулярны друг другу, если между двумя этими отметками укладывалось 5 единиц (52 = З2 + 42). Так проблема измерения углов сводилась к проверке соотношения длин, то есть гораздо более простой операции.


ПРЕДШЕСТВЕННИКИ ТЕОРЕМЫ ПИФАГОРА

Египтяне и вавилоняне уже знали, что треугольник с соотношением сторон 3:4:5 прямоугольный, но, видимо, только греки заметили, что З2 + 42 = 52 и, таким образом, первыми сформулировали теорему в ее общем виде. Тысячелетние китайская и индийская культуры тоже довольно рано обратили внимание на эту геометрическую особенность — проблема диагонали квадрата была известна в этих культурах, а вот в великих цивилизациях доколумбовой Америки или Африканского континента (за исключением Египта) она не ставилась. В любом случае, Пифагору или кому-то из его учеников принадлежит заслуга открытия того, что описанное выше соотношение справедливо для всех возможных прямоугольных треугольников.


ПРЕДШЕСТВЕННИКИ ТЕОРЕМЫ ПИФАГОРА

Задолго до того как Пифагор сформулировал общий закон, касающийся всех прямоугольных треугольников, в Вавилоне эпохи Хаммурапи — властителя, умершего примерно в 1750 году до н. э., — уже знали, как высчитывать «пифагоровы тройки», то есть такие комбинации положительных чисел (a, b, с), при которых а2 + b2 = с2. Вот некоторые примеры: (3, 4, 5), (5, 12, 13) и (8, 15, 17). Согласно теореме Пифагора, каждая из этих троек представляет собой длины сторон прямоугольного треугольника.

Наш главный источник информации о Вавилоне и Месопотамии — знаменитые глиняные клинописные таблички, на которых писали, пока глина была еще мягкой, а затем обжигали их в печи или высушивали на солнце, что придавало им достаточную твердость. Из всех этих табличек особую ценность для истории математики представляют те, что написаны около 2000 года до н.э. В самых древних записях использовался аккадский язык. Слова в нем состоят из одного или более слогов, и каждое из них отображается группой прямых черточек. Для письма аккадцы использовали палочку с треугольным концом, который они наклонно вдавливали в табличку, от чего оставались клиновидные следы, ориентированные в разных направлениях, поэтому такое письмо называется клинописью.

Среди 300 вавилонских табличек математического содержания из полумиллиона найденных до сегодняшнего дня особый интерес представляет табличка, называемая Плимптон 322 (табличка № 332 из коллекции издателя Джорджа Артура Плимптона, которую он в 1932 году передал Колумбийскому университету). Эта табличка относится к древнему периоду династии Хаммурапи (который охватывает эпоху между 1800 и 1600 годами до н.э.) и на ней изображена таблица с четырьмя колонками символов, которые, по-видимому, представляют числа, записанные в вавилонской шестидесятеричной системе.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
The Beatles от A до Z: необычное путешествие в наследие «ливерпульской четверки»
The Beatles от A до Z: необычное путешествие в наследие «ливерпульской четверки»

Британский писатель, продюсер и музыкант Питер Эшер рассказывает историю «Битлз» через песни: их собственные, их коллег, предшественников и последователей. Для этого он использует классическую алфавитную систему, однако применяет ее неожиданным образом. К примеру, вы не встретите известнейших «Yesterday» на букву Y или «All you need is love» на букву A, вместо этого Эшер рушит устоявшиеся ассоциации и заменяет их другими, показывая даже привычные треки с новой стороны. При этом автор так искусно препарирует музыкальные композиции, указывая нам на важные и «вкусные» детали, что вам гарантированно захочется все это переслушать – так не отказывайте себе в удовольствии.И не забывайте, что Эшер лично знал легендарную «четверку», ведь Пол Маккартни даже когда-то жил в его доме! Поэтому здесь нашлось место и для уникальных историй и воспоминаний, которые вряд ли можно прочесть где-либо еще.Эта книга – повод влюбиться в музыку «Битлз» снова.

Питер Эшер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература