ГЛАВА 2
Теорема
Теорема Пифагора — одно из самых значительных математических достижений в истории. И хотя ее приписывают самосскому мудрецу, известно, что схожие результаты были получены еще в древних цивилизациях Востока. Однако мы не можем отказывать греческим геометрам в гениальности: переход от частного к общему, от наблюдения к теореме — это их заслуга.
Насколько в общественном сознании фигура Пифагора ассоциируется с математикой, настолько же она связана с теоремой, носящей его имя. Однако ее точная формулировка известна меньше, хотя данную теорему изучают в школах по всему миру, и еще меньше люди понимают, зачем в действительности она нужна.
На вопрос о пользе теоремы ответить несложно. Она решает классическую проблему геометрии большой теоретической важности. Таким образом, не говоря о практической пользе, важность ее состоит в том, что она служит основой множества теорем в тригонометрии и аналитической геометрии и, очевидно, в том, что она необходима для извлечения квадратных корней. Как мы увидим далее, проблема извлечения корней из чисел проявляется в достаточно простых математических задачах, таких как вычисление длины диагонали квадрата или прямоугольника по его сторонам.
Возможно, своим влиянием и известностью эта теорема обязана ощущению неочевидности, которое остается после ее анализа. В отличие от других теорем, в этой нет ничего интуитивно понятного, что объясняло бы ее свойства, которые мы сейчас еще раз рассмотрим, так что ее понимание — это акт чисто логической дедукции. Именно поэтому некоторые считают теорему квинтэссенцией математики.