пропорциональное египетскому треугольнику. В Берлинском папирусе тоже содержится ряд медицинских, литературных и математических документов Среднего Царства, содержащих следы пифагоровой теоремы. В одном из математических папирусов решается система уравнений с двумя неизвестными в связи со следующей задачей:
Площадь квадрата в 100 квадратных кубитов равна сумме двух меньших квадратов. Сторона одного из них составляет 1/2 + 1/4 стороны другого. Найди длины сторон этих квадратов.
На языке современной алгебры соответствующая задача решается следующей системой:
х2
+ у2 = 100,y = (1/2 + 4/4)x
что требует, как это видно в папирусе, выполнить подстановку и вычислить квадратный корень. Это решение типологически близко пифагорову, но более, чем о знакомстве с теоремой Пифагора, оно свидетельствует о том, что египтянам были известны методы решения двойных уравнений — значительный результат для Древнего Египта.
В Индии также развивались арифметико-геометрические знания, связанные с теоремой Пифагора, — они применялись при строительстве храмов и возведении алтарей. Между VIII и II веком до н. э. арифметические и геометрические сведения составили сборник текстов, известный под названием «Сульвасутра». Сульва — это термин, обозначающий веревки, использующиеся для измерения, а Сутра — книга правил и изречений, относящихся к определенному ритуалу или науке, так что название можно перевести как «Учебник правил о веревке».
Тексты «Сульвасутры» были своего рода сборником книг, где излагались правила возведения алтарей определенных форм и размеров, среди которых самые интересные — это «Баудхаяна» и «Апастамба», датируемые V веком до н. э. Там излагаются способы использования веревки не только для измерения, но и для построения перпендикулярных линий — для этого применяются три веревки, длины которых представляют пифагоровы тройки (к примеру, 3, 4, 5; 5, 12, 13; 8, 15, 17; 7, 24, 25). Для этих целей использовали чаще всего треугольник со сторонами 15, 36, 39 (пропорциональный треугольнику 5, 12, 13, называемому индийским треугольником).