Предположим m и n не имеют общего делителя и делятся друг на друга, тогда m или n должно быть нечетным. Так как m2
= 2n2, то m2 четное и, следовательно, m тоже четное, то есть n — нечетное. Таким образом, мы можем подставить m = 2p. Следовательно, 4p2 = 2n2; из этого выводится, что n2 = 2p2, и значит, n четное. Выходит, что никакая дробь вида m/n не может выражать длину гипотенузы. Это соображение подчеркивает, что при любой единице измерения есть такие длины, которые не могут быть выражены числовым соотношением на основе этой единицы, в том смысле что не существует таких целых чисел тип, чтобы взятая т раз длина совпадала с взятой п раз единицей измерения. Метод Евклида используется и сегодня для доказательства иррациональности √2, однако ученые склонны считать, что он был добавлен в текст «Начал» значительно позже. В современных изданиях Евклида этот метод обычно опускается, и книга X оканчивается предложением 115.Как мы уже говорили, введение иррациональных чисел определило независимость геометрии от арифметики. В книге II «Начал» Евклид геометрическим методом доказывает многие вещи, которые сегодня доказываются алгебраически, к примеру (a + b)2
= a2 + 2ab + b2. К этому его вынуждала проблема несоизмеримых величин, и пока не была найдена арифметическая теория, пригодная для операции с подобными числами, геометрический метод Евклида оставался для этого наиболее удобным.√2 был первым открытым иррациональным числом, научным успехом величайшей важности, который на века определил задачи математики в области вещественных чисел. Хотя история Гиппаса, по-видимому, показывает нам величественную картину краха пифагорейской Вселенной, найти √2 несложно — сложно понять, что с ним делать. Чтобы обнаружить его, достаточно нарисовать на листе квадрат, как это сделано на рисунке 1. Главный квадрат делится на четыре маленьких со стороной 1, а затем проводятся их диагонали. Таким образом мы получаем внутренний квадрат с площадью 2, который занимает половину квадрата со стороной 2. Сторона этого внутреннего квадрата, умноженная на себя, будет равна 2. Таким образом, мы получили квадратный корень из двух, или, в современной нотации, √2. Нарисовав эту фигуру на бумаге, уже невозможно смотреть на месопотамскую табличку, хранящуюся в Йельском университете под номером YBC 7289, без некоторого изумления. Эта находка датируется периодом между 1800 и 1600 годом до н.э. и на ней изображен квадрат с двумя диагоналями, которые с легкостью позволяют найти √2. Рисунок сопровождается семью цифрами, нацарапанными клинописью по вавилонской шестидесятеричной системе. Исследователи утверждают, что эти числа соответствуют приближению √2 в первых знаках после запятой:
1 + 24/60 + 51/60 2 + 10/60 3 = 1, 41421296.
В индийском трактате «Сульвасутра» значительно более позднего времени (между 800 и 200 годом до н.э.) также можно узнать, что квадрат со стороной 1 и его диагональ не могут быть соизмеримыми. Историки математики интерпретируют следующие слова из книги как приближение √2: «...длина стороны увеличивается на треть, а эта треть на ее четвертую часть, и из этого вычитается тридцать четвертая часть этой четверти». Числовое выражение этой формулы будет таким:
√2 = 1 + 1/3 + 1/(3 · 4) - 1/(3 · 4 · 34) = 577/408 = 1, 414215686.
И все-таки, хотя подобные свидетельства весьма впечатляют, вавилоняне, индийцы и, конечно, египтяне использовали дроби исключительно в практических целях, и это положение не изменилось до развития греческой математики. Вавилоняне не знали, что их шестидесятеричные приближения никогда не будут вполне точными, так же как и египтяне не могли понять саму суть иррациональных чисел. Вопреки намерениям пифагорейцев, их заслуга состояла в открытии, что несоизмеримые соотношения — это нечто совершенно отличное от соизмеримых. Теория пропорций для несоизмеримых соотношений и для любых типов величин была впоследствии выдвинута Евдоксом Книдским (ок. 408-355 до н.э.), философом, математиком и врачом, который был учеником Платона (ок. 427-347 до н.э.).
Невероятные успехи греческой классической цивилизации до сих пор поражают воображение. Несмотря на это, греческая математика оказалась неспособна преодолеть некоторые свои серьезные ограничения, что поставило перед последующими поколениями ряд фундаментальных проблем. В конце концов, то, что было главным достоинством греков — точность концепций и определений, — стало огромным грузом для развития креативной математики.