Так получается большое многообразие цепей — схем каких-то механизмов, над которыми можно производить некоторые формальные операции. По-видимому, существует некоторое сродство между этими цепями, несущими механическую информацию, и теми цепочками органических молекул, которые несут генетическую информацию, хотя теория образования механических цепей была разработана задолго до того, как были открыты гены. Количественные и качественные соотношения, полученные методом построения цепей, приводят к двум следствиям. Первое состоит в том, что все существующие механизмы укладываются в описанные структурные образования и лишь изредка попадают в число двух образований. Это означает, что свободное созидание механизмов, не ограниченное никакими условиями, само по себе замкнулось в очень тесном кругу возможных вариантов, и поиски новых механизмов происходили лишь среди известных и хорошо изученных структурных комбинаций.
Второе следствие структурной теории — это возможность использования для нужд практического машинного конструирования всего того богатства форм цепей, которое обнаруживается при его аналитическом рассмотрении.
Структурная теория Ассура—Артоболевского. Разработка структурной теории Ассура была продолжена советским ученым Иваном Ивановичем Артоболевским. Работая на протяжении ряда лет над развитием идей своего предшественника и исследуя важный вопрос о возможности их применения к теории пространственных механизмов, он построил стройную структурную и классификационную систему механизмов. По его мнению, в учении об элементах, из которых составляются механизмы, почти не делалось попыток установить связь и преемственность методов структурного анализа с методами кинематического и динамического анализа. Поэтому он начинает свое исследование с изучения структуры и классификации кинематических пар, затем изучает кинематические цепи и только после этого переходит к вопросу о структуре и классификации механизмов, получая таким образом цельную, логически взаимосвязанную теорию. Приняв в качестве исходного положения структурную теорию, он обобщил также классические результаты и русских математиков, и представителей немецкой науки о машинах, а кроме того, результаты советских исследователей в области теории машин.
Так была построена систематика механизмов, которая нашла самое широкое применение в мировой науке. Развивая теорию кинематических пар и исходя из количества связей, накладываемых на относительное движение звеньев, Артоболевский различает кинематические пары пяти классов. К первому классу были отнесены пары, накладывающие одну связь и, следовательно, имеющие пять из шести возможных степеней свободы. Пары второго класса накладывают две связи, пары третьего класса — три связи, пары четвертого класса — четыре связи, пары пятого класса — пять связей. Иначе говоря, эти пары имеют лишь одну степень свободы. Представителями пятого класса являются шарнир и ползунок. При этом любая пара высшего класса может быть заменена кинематической цепью, состоящей из ряда звеньев, входящих в пары низшего класса. На этом основании можно свести исследование структуры цепей, образованных парами разных классов, к исследованию цепей, звенья которых входят только в пары пятого класса. Замечание это вводит единство в исследование механизмов и теоретически обосновывает, возможность исследования механизмов в единообразных схемах.
В структуре кинематических цепей в зависимости от общих условий связи, налагаемых на цепь, различаются пять семейств. Семейство, не имеющее никаких общих связей, называется нулевым. Это пространственные механизмы в самом общем виде. Затем следуют механизмы первого семейства, имеющие одну общую связь (пространственные), механизмы второго семейства, имеющие две общие связи (пространственные), механизмы третьего семейства, имеющие три общие связи (сферические пространственные и плоские), механизмы четвертого семейства, имеющие четыре общие связи, в простейшем случае включают только поступательно движущиеся пары.