Оригинальный выход из описанных выше затруднений предложил американский ученый Л. Заде[43]
: он ввел понятиеЧеткие множества отличаются от нечетких тем, что для них p(x) может принимать лишь два значения: 0 и 1, причем p(x) = 1, если x∈A, и p(x) = 0, если x∉A. Наличие экспертов позволяет из совокупности четких множеств составить нечеткое множество. Конечно, при всей нечеткости полученного множества можно с уверенностью сказать, что для некоторых x имеем p(x) = 1 (например, никто не усомнится в молодости новорожденного ребенка), а для некоторых x имеем p(x) = 0 (например, вряд ли кто-нибудь назовет молодым восьмидесятилетнего старца). Впрочем, рассказывают, что когда гроссмейстеру Тартаковеру было 65 лет, он победил 70-летнего гроссмейстера Бернштейна и воскликнул: "Молодость побеждает!".
Разумеется, созывать каждый раз консилиум экспертов для определения "коэффициентов принадлежности" вряд ли целесообразно. Чаще коэффициенты вводят иным путем, например на основе статистических данных. Но после того, как они выбраны, с их помощью можно получить коэффициенты принадлежности и для других множеств.
На основе понятия нечеткого множества были введены нечеткие отношения и нечеткие алгоритмы. С нечеткими алгоритмами люди имели дело задолго до того, как их определил Л. Заде. В любой поваренной книге найдутся алгоритмы, содержащие советы вида: "Сливки сперва особо взбить, чтобы были весьма густы, потом всыпать в них муку и еще все вместе венчиком хорошенько взбить...". И хотя авторы этих книг не определяли точно, когда сливки надо считать весьма густыми и какое взбивание венчиком надо считать достаточным, надо думать, что блюда по этим рецептам получались совсем неплохими. Любопытно, что теперь нечеткие алгоритмы начали встречаться и в таких разделах науки, как вычислительная математика. Однако только будущее покажет, был ли удачен предложенный Заде метод введения нечетких множеств и какая из него получится польза.
Бесконечные множества.
Все то, что говорилось о множествах выше, относилось в основном к множествам, содержащим конечное число элементов. На протяжении тысячелетий изучение бесконечных множеств было изгнано из науки авторитетом Аристотеля. Впрочем, преподававший в Оксфордском университете в XIII в. схоласт Роберт Гроссетет (он был, между прочим, учителем знаменитого Роджера Бэкона) считал, что актуально-бесконечное — это определенное число, которое хотя и не познаваемо для нас, но существует актуально. Более того, Гроссетет считал возможным сравнивать друг с другом две бесконечности. Он полагал, что больше моментов в большем времени, чем в меньшем, и больше точек в большей величине, чем в меньшей. Число "точек в отрезке длиной в локоть" он считал истинной мерой этого отрезка. Тем самым потенциальной бесконечности Аристотеля снова была противопоставлена актуальная бесконечность единиц.
Использование актуальной бесконечности в математике исподволь начинается в XVIII в. (бесконечные ряды фактически рассматривались как суммы бесконечного множества слагаемых), а в XIX в. Гаусс, столь резко возражавший против использования актуальной бесконечности в математике, фактически использует ее в своих теоретико-числовых исследованиях. В более явном виде использование этих же понятий встречается в работах последователей Гаусса немецких математиков Л. Дирихле[44]
и Р. Дедекинда[45].Однако систематически свойства бесконечных множеств почти не изучались. Лишь в 1851 г. была посмертно опубликована книга чешского математика и философа Б. Больцано[46]
"Парадоксы бесконечности", в которой он сделал первую попытку исследовать свойства актуальной бесконечности. В этой книге были предвосхищены многие понятия теории бесконечных множеств, однако они не получили еще той точности и ясности, которая была придана им через два десятилетия в работах Г. Кантора.Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное