Пулями Резерфорда стали альфа-частицы — ядра атомов гелия, а участком земли для него служила тончайшая золотая фольга. Работа Томсона показала, что электроны-изюминки обладают очень малой массой, так что почти вся масса атома должна была приходиться на сам пудинг. Если бы в пудинге не было уплотнений, то б
Резерфорд пошел дальше и нашел доказательства того, что ядро состоит из двух различных типов частиц: протонов, несущих положительный заряд, и нейтронов с нулевым зарядом. Массы тех и других очень близки и примерно в 1800 раз превосходят массу электрона. Таким образом, атомы не только не являются неделимыми, но и состоят из еще более мелких субатомных частиц. Эта теория объясняет целочисленную нумерологию химических элементов: оказывается, подсчитывается не что-нибудь, а количество протонов и нейтронов. Кроме того, она объясняет изотопы: добавление или удаление нескольких нейтронов изменяет массу атома, но сохраняет его суммарный нулевой заряд и число электронов, равное числу протонов. Химические свойства атома определяются в основном его электронами. К примеру, хлор-35 содержит 17 протонов, 17 электронов и 18 нейтронов; хлор-37 − 17 протонов, 17 электронов и 20 нейтронов. Атомная масса 35,45 возникает потому, что природный хлор представляет собой неравную смесь этих двух изотопов.
В начале XX в. появилась и новая теория, применимая к веществу в масштабе субатомных частиц. Она получила название «квантовая механика», и после ее появления физика принципиально изменилась и уже никогда не будет прежней. Квантовая механика предсказала множество новых явлений, которые затем удалось пронаблюдать в лаборатории, и существование новых элементарных частиц. Она также помогла понять прежде не поддававшиеся объяснению явления. Наконец, она изменила наши представления о Вселенной, поскольку классический ее образ, несмотря на великолепную согласованность со всеми предыдущими наблюдениями, оказался неверен. Человеческие органы чувств плохо приспособлены для восприятия реальности на фундаментальном уровне.
В классической физике вещество состоит из частиц, а свет представляет собой волну. В квантовой механике свет тоже частица, фотон; и наоборот, вещество (к примеру, электроны) может иногда вести себя как волна. Прежнее четкое деление на волны и частицы не то чтобы размывается, а вовсе исчезает, сменяясь корпускулярно-волновым дуализмом. Если воспринимать все буквально, планетарная модель атома работала не слишком хорошо, поэтому вскоре появился новый образ. Электроны не обращаются вокруг ядра, как планеты вокруг Солнца, а образуют размытое облако с центром в ядре — облако вероятностей, а не чего-то конкретного. Плотность облака в некоторой точке соответствует вероятности обнаружить в данной точке электрон.
Итак, помимо протонов, нейтронов и электронов физики знали еще одну субатомную частицу — фотон. Вскоре появились и другие. Кажущееся нарушение закона сохранения энергии побудило Вольфганга Паули предложить коллегам исправить положение — постулировать существование нейтрино, невидимой и практически необнаружимой новой частицы, которая объяснила бы утечку энергии. Необнаружимость частицы, однако, оказалась неполной, что позволило в 1956 г. подтвердить ее существование. После этого как будто распахнулись шлюзы. Пионы, мюоны, каоны посыпались как из рога изобилия (последние были открыты в результате наблюдения космических лучей). Появилась новая дисциплина — физика элементарных частиц, и первым ее рабочим инструментом стал метод Резерфорда, позволявший проводить зондирование на тех невероятно малых масштабах, о которых шла речь: чтобы выяснить, как устроен тот или иной объект, нужно бомбардировать его разными «снарядами» и смотреть на результат. Началось строительство и использование все более масштабных ускорителей частиц — по существу, орудий, стреляющих теми самыми пробными снарядами. Стэнфордский линейный ускоритель имел длину 3 км. Чтобы не строить ускорителей длиной в целый континент, их стали изгибать и замыкать в круг, чтобы частицы могли беспрерывно двигаться по ним, одновременно набирая колоссальные скорости. Это серьезно усложнило технологию, поскольку частицы при движении по кругу излучают энергию, но с этим научились справляться.