Читаем Величайшие математические задачи полностью

Пулями Резерфорда стали альфа-частицы — ядра атомов гелия, а участком земли для него служила тончайшая золотая фольга. Работа Томсона показала, что электроны-изюминки обладают очень малой массой, так что почти вся масса атома должна была приходиться на сам пудинг. Если бы в пудинге не было уплотнений, то бо́льшая часть альфа-частиц должна была бы пролетать насквозь. Лишь некоторые частицы могли отклоняться от своего пути, и то ненамного. Вместо этого оказалось, что небольшая, но заметная часть альфа-частиц отклонялась на достаточно большие углы, что явно не соответствовало картине пудинга. Резерфорд предложил другую метафору, которой мы часто пользуемся и сегодня, несмотря на существование более современных моделей. Речь идет о планетарной модели атома. Атом подобен Солнечной системе, предположил Резерфорд: в нем есть громадное центральное ядро, «солнце» системы, а вокруг ядра, подобно планетам, обращаются электроны. Поэтому атом, как и Солнечная система, по большей части представляет собой пустое пространство.

Резерфорд пошел дальше и нашел доказательства того, что ядро состоит из двух различных типов частиц: протонов, несущих положительный заряд, и нейтронов с нулевым зарядом. Массы тех и других очень близки и примерно в 1800 раз превосходят массу электрона. Таким образом, атомы не только не являются неделимыми, но и состоят из еще более мелких субатомных частиц. Эта теория объясняет целочисленную нумерологию химических элементов: оказывается, подсчитывается не что-нибудь, а количество протонов и нейтронов. Кроме того, она объясняет изотопы: добавление или удаление нескольких нейтронов изменяет массу атома, но сохраняет его суммарный нулевой заряд и число электронов, равное числу протонов. Химические свойства атома определяются в основном его электронами. К примеру, хлор-35 содержит 17 протонов, 17 электронов и 18 нейтронов; хлор-37 − 17 протонов, 17 электронов и 20 нейтронов. Атомная масса 35,45 возникает потому, что природный хлор представляет собой неравную смесь этих двух изотопов.

В начале XX в. появилась и новая теория, применимая к веществу в масштабе субатомных частиц. Она получила название «квантовая механика», и после ее появления физика принципиально изменилась и уже никогда не будет прежней. Квантовая механика предсказала множество новых явлений, которые затем удалось пронаблюдать в лаборатории, и существование новых элементарных частиц. Она также помогла понять прежде не поддававшиеся объяснению явления. Наконец, она изменила наши представления о Вселенной, поскольку классический ее образ, несмотря на великолепную согласованность со всеми предыдущими наблюдениями, оказался неверен. Человеческие органы чувств плохо приспособлены для восприятия реальности на фундаментальном уровне.

В классической физике вещество состоит из частиц, а свет представляет собой волну. В квантовой механике свет тоже частица, фотон; и наоборот, вещество (к примеру, электроны) может иногда вести себя как волна. Прежнее четкое деление на волны и частицы не то чтобы размывается, а вовсе исчезает, сменяясь корпускулярно-волновым дуализмом. Если воспринимать все буквально, планетарная модель атома работала не слишком хорошо, поэтому вскоре появился новый образ. Электроны не обращаются вокруг ядра, как планеты вокруг Солнца, а образуют размытое облако с центром в ядре — облако вероятностей, а не чего-то конкретного. Плотность облака в некоторой точке соответствует вероятности обнаружить в данной точке электрон.

Итак, помимо протонов, нейтронов и электронов физики знали еще одну субатомную частицу — фотон. Вскоре появились и другие. Кажущееся нарушение закона сохранения энергии побудило Вольфганга Паули предложить коллегам исправить положение — постулировать существование нейтрино, невидимой и практически необнаружимой новой частицы, которая объяснила бы утечку энергии. Необнаружимость частицы, однако, оказалась неполной, что позволило в 1956 г. подтвердить ее существование. После этого как будто распахнулись шлюзы. Пионы, мюоны, каоны посыпались как из рога изобилия (последние были открыты в результате наблюдения космических лучей). Появилась новая дисциплина — физика элементарных частиц, и первым ее рабочим инструментом стал метод Резерфорда, позволявший проводить зондирование на тех невероятно малых масштабах, о которых шла речь: чтобы выяснить, как устроен тот или иной объект, нужно бомбардировать его разными «снарядами» и смотреть на результат. Началось строительство и использование все более масштабных ускорителей частиц — по существу, орудий, стреляющих теми самыми пробными снарядами. Стэнфордский линейный ускоритель имел длину 3 км. Чтобы не строить ускорителей длиной в целый континент, их стали изгибать и замыкать в круг, чтобы частицы могли беспрерывно двигаться по ним, одновременно набирая колоссальные скорости. Это серьезно усложнило технологию, поскольку частицы при движении по кругу излучают энергию, но с этим научились справляться.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное