Читаем Величайшие математические задачи полностью

Точка зрения, использованная при разработке этой теории, давала подходы к методу, который мог бы применяться и более широко. В основе его лежала идея, восходившая непосредственно к Ньютону. Пытаясь решить уравнения, связанные с законом Ньютона, ученые открыли несколько полезных общих принципов, известных как законы сохранения. Дело в том, что при движении системы массивных тел некоторые величины остаются неизменными. Самая известная из них — энергия, которая бывает двух видов: кинетическая и потенциальная. Кинетическая энергия определяется тем, насколько быстро движется тело, а потенциальная — представляет собой работу, проделанную определенными силами. Когда камень падает со скалы, он как бы обменивает потенциальную энергию, связанную с тяготением, на кинетическую. Говоря обычным языком, он падает и ускоряется. Кроме этого, сохраняются такие величины, как импульс, равный произведению массы на скорость, и момент импульса, связанный со скоростью вращения тела. Сохраняющиеся величины связывают различные переменные, используемые для описания системы, и таким образом уменьшают их число. Это очень полезно при решении уравнений, как мы уже видели в главе 8, где речь шла о задаче двух тел.

К началу XX в. ученые разобрались в том, откуда взялись законы сохранения. Эмми Нетер доказала, что каждая сохраняющаяся величина соответствует непрерывной группе симметрий в уравнениях. Симметрия — это математическое преобразование, при котором уравнения не меняются. Все симметрии образуют группу с операцией «провести одно преобразование, затем другое». Непрерывная группа — это группа симметрий, определенная единственным действительным числом. К примеру, вращение вокруг заданной оси есть симметрия, и угол вращения может задаваться любым действительным числом, поэтому вращения — на все возможные углы — вокруг заданной оси образуют непрерывную группу. Из сохраняющихся величин с этой симметрией связан момент импульса, или вращательный момент. Точно так же сохранение импульса связано с непрерывной группой перемещений в заданном направлении. А как насчет энергии? Ее сохранение связанно с временны́ми симметриями — уравнения неизменны в любой момент времени.


Попытавшись унифицировать фундаментальные силы природы, физики убедились, что ключ к единой теории — именно симметрии. Первым такая унификация удалась Максвеллу, который соединил электричество и магнетизм в единое электромагнитное поле. Максвелл сделал это без привлечения симметрии, но вскоре стало ясно, что в его уравнениях присутствует особый вид симметрии, которого прежде никто не замечал: калибровочная симметрия. Создавалось впечатление, что она может стать стратегическим рычагом, при помощи которого ученым удастся открыть путь к более общим квантовым теориям поля.

Вращение и перенос — глобальные симметрии: они равно применимы в любой точке пространства и времени. Вращение вокруг определенной оси поворачивает на один и тот же угол каждую точку пространства. Не таковы калибровочные симметрии: это местные симметрии, они могут меняться от одной точки пространства к другой. В случае электромагнетизма местные симметрии — это смена фазы. Колебания электромагнитного поля в определенной точке обладают амплитудой (это размах колебаний) и фазой (это момент, в который колеблющаяся величина достигает своего максимума). Если взять решение уравнений поля Максвелла и в каждой точке поменять фазу, то получится другое решение (если, конечно, вы внесете в описание поля соответствующее компенсирующее изменение, включающее местный электромагнитный заряд).

Калибровочные симметрии ввел в обращение Герман Вейль в безуспешной попытке добиться дальнейшей унификации электромагнетизма и общей теории относительности, т. е. электромагнитных и гравитационных сил. Название появилось в результате недопонимания: он считал, что правильная местная симметрия должна означать изменение пространственного масштаба, т. е. «калибровку». Из этой идеи ничего не получилось, но логика квантовой механики заставила Владимира Фока и Фрица Лондона предложить другой тип местной симметрии. Квантовая механика формулируется с использованием не только действительных, но и комплексных чисел, и каждая квантовая волновая функция имеет комплексную фазу. Значимые местные симметрии вращают фазу на любой угол на комплексной плоскости. В принципе, эта группа симметрий включает в себя все вращения, но в комплексных координатах все они представляют собой «унитарные трансформации» (U) в пространстве с одним комплексным измерением (1), поэтому группа, сформированная этими симметриями, обозначается как U(1). Формальные обозначения здесь не просто математическая игра: они позволили физикам записать, а затем и решить уравнения для заряженных квантовых частиц, движущихся в электромагнитном поле. Именно благодаря этому Томонага, Швингер, Фейнман и Дайсон разработали первую релятивистскую квантовополевую теорию электромагнитных взаимодействий: квантовую электродинамику. Симметрия калибровочной группы U(1) играла в их работах фундаментальную роль.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное