Читаем Величайшие математические задачи полностью

«Профессор поинтересовался: “Я слышал, вы предполагаете, что некоторые эллиптические уравнения могут быть связаны с модулярными формами”.

“Нет, вы не понимаете, — ответил Симура. — Речь не о некоторых эллиптических уравнениях, так ведут себя все эллиптические уравнения!”»

Несмотря на общий скептицизм, Симура продолжал упорно работать, и с годами это предположение приобрело достаточную респектабельность, чтобы о нем стали говорить как о гипотезе Таниямы — Симуры. Затем Андре Вейль, один из крупнейших специалистов по теории чисел XX столетия, нашел дополнительные свидетельства в ее пользу, опубликовал их и высказал уверенность в том, что она на самом деле вполне может быть верна. После этого гипотезу стали называть гипотезой Таниямы — Симуры — Вейля. Вообще, название ее окончательно не устоялось, и в публикациях о ней можно встретить самые разные комбинации имен трех этих математиков. Я буду придерживаться названия «гипотеза Таниямы — Симуры».

В 1960-е гг. еще один математический тяжеловес Роберт Ленглендс понял, что гипотезу Таниямы — Симуры можно рассматривать как один из элементов куда более обширной и амбициозной программы, способной объединить алгебраическую и аналитическую теорию чисел. Он сформулировал целый набор гипотез, связанных с этой идеей и известных сегодня как программа Ленглендса. Она была еще более спекулятивна, чем гипотеза Таниямы — Симуры, но обладала неотразимой элегантностью: подобная математика настолько красива, что просто обязана быть истинной. В течение последующего десятилетия математический мир постепенно оценил красоту программы Ленглендса, и ее исполнение начали воспринимать как одну из главных целей алгебраической теории чисел. Программа Ленглендса представляется верным направлением развития, если, конечно, кому-то удастся сделать в этом направлении первый шаг.

В 1980-е Фрей заметил, что применение гипотезы Таниямы — Симуры к его эллиптической кривой означало бы доказательство Великой теоремы Ферма. Однако к тому времени выявилась еще одна проблема с его идеей. Когда в 1984 г. он прочел лекцию на эту тему, аудитория заметила прореху в ключевом аргументе: его кривая настолько необычна, что просто не может быть модулярной. Один из ведущих специалистов в этой области Жан-Пьер Серр быстро закрыл прореху, но для этого ему пришлось задействовать еще один результат, также нуждавшийся в доказательстве, — специальную гипотезу о понижении уровня. К 1986 г., однако, Кен Рибет доказал эту гипотезу. Теперь единственным препятствием на пути к доказательству теоремы Ферма была гипотеза Таниямы — Симуры, и мнение математического сообщества начало потихоньку смещаться. Серр предсказал, что Великая теорема Ферма, вероятно, будет доказана в течение ближайших десяти лет или около того. Как именно доказана, оставалось вопросом, но в воздухе уже витала общая уверенность в успехе: методики, связанные с модулярными функциями, обретали такую мощь, что очень скоро кто-нибудь должен был реализовать наконец подход Фрея.


Этим кем-то оказался Эндрю Уайлс. В телепрограмме, целиком посвященной доказательству теоремы Ферма, он рассказал:

«Мне было 10 лет, когда я нашел книгу по математике, в которой рассказывалось немного об истории этой задачи [Великой теоремы Ферма], — что один человек написал ее 300 лет назад, но никто никогда не видел ее доказательства, никто не знал, существует ли оно, и с тех пор люди искали его. Передо мной была задача, которую я, десятилетний мальчик, был в состоянии понять, но которую никто из великих математиков прошлого не смог решить. И с того момента я, конечно, пытался решить ее сам. Это был такой вызов, такая красивая задача».

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное