Читаем Величайшие математические задачи полностью

Если при решении математической задачи вы оказались в тупике, последуйте совету Пуанкаре: отвлекитесь и займитесь чем-нибудь другим. Если вам повезет и ветер будет попутным, у вас рано или поздно появится новая идея. Специалисты по теории чисел вряд ли осознанно следовали этому совету, но тем не менее они поступали именно так. Как и утверждал Пуанкаре, такая тактика срабатывала. Некоторые специалисты по теории чисел перенесли внимание на эллиптические кривые (см. главу 6). По иронии судьбы, со временем именно в этой области математики выявились поразительные и неожиданные связи с Великой теоремой Ферма, которые и привели, в конце концов, к доказательству Уайлса. Для описания этих связей нам потребуется еще одно понятие — модулярной функции. С этого момента наше обсуждение приобретет несколько технический характер, но за всем этим стоит вполне разумная история, да нам и нужны-то лишь самые общие положения. Следите за моими рассуждениями.

В главе 6 мы видели, что теория эллиптических функций сильно повлияла на развитие комплексного анализа. В 1830-е гг. Жозеф Лиувилль открыл, что разновидностей эллиптических функций не так уж много. Для любых двух периодов существует особая эллиптическая функция, известная как функция Вейерштрасса, и любая другая эллиптическая функция с теми же двумя периодами является просто ее вариантом. Тем самым подразумевается, что из функций с двойной периодичностью достаточно разобраться в функциях Вейерштрасса — по одной на каждую пару периодов.

Геометрически двойную периодическую структуру эллиптической функции можно интерпретировать как решетку на комплексной плоскости: это все комбинации вида mu + nv двух периодов u и v (см. рис. 30). Если мы возьмем комплексное число z и добавим к нему одну из точек нашей решетки, то значение эллиптической функции в новой точке будет тем же, что и в первоначальной. Иными словами, эллиптическая функция обладает той же симметрией, что и описанная решетка.

Аналитики открыли гораздо более богатый источник симметрий комплексной плоскости, известный как преобразования Мёбиуса. Эти преобразования превращают z в (az + b)/(cz + d), где a, b, c, d — комплексные константы. Симметрии, определяемые решеткой, представляют собой особые случаи преобразований Мёбиуса, но существуют и другие. Однако в более общем случае тоже присутствует набор точек, аналогичный рассмотренной нами решетке. Решетка определяет на евклидовой плоскости ячеистую структуру: достаточно взять в виде ячейки параллелограмм и поместить его углы в узлы решетки (см. рис. 26 и 30). При помощи преобразований Мёбиуса мы можем построить ячеистую структуру в подходящей неевклидовой геометрии, на гиперболической поверхности. Мы можем установить тождественность этой поверхности и части комплексной плоскости, где прямые заменяются дугами окружностей.



В гиперболической геометрии существуют весьма симметричные ячеистые структуры. Для каждой из них можно построить комплексные функции, которые на каждой ячейке повторяют свои значения. Такие функции известны как модулярные и представляют собой естественное обобщение эллиптических функций. Гиперболическая геометрия — очень насыщенная область математики, и диапазон ячеистых структур здесь намного шире, чем на евклидовой плоскости. Поэтому специалисты по комплексному анализу всерьез заинтересовались неевклидовой геометрией. При этом выявилась глубокая связь между математическим анализом и теорией чисел. Модулярные функции играют для эллиптических кривых ту же роль, что тригонометрические функции для окружности.

Напомню, что единичная окружность состоит из точек (x, y), таких, что x² + y² = 1. Пусть A — действительное число, и

x= cosA, y= sinA.

Тогда определение синуса и косинуса говорит о том, что данная точка лежит на единичной окружности. Более того, любая точка единичной окружности имеет такую форму. Говоря математическим языком, эти тригонометрические функции представляют окружность в параметрическом виде. Что-то очень похожее происходит и с модулярными функциями. Если мы определим x и y при помощи подходящих модулярных функций параметра A, то соответствующая точка будет лежать на эллиптической кривой — одной и той же эллиптической кривой, какое бы значение ни принимал параметр A. Существуют и более абстрактные способы сформулировать вышеизложенное, и специалисты пользуются именно ими, потому что они удобнее, но этот вариант позволяет выявить аналогию с тригонометрическими функциями и окружностью. Эта связь порождает свою эллиптическую кривую для каждой модулярной функции, а разнообразие модулярных функций громадно — ведь это все симметричные ячеистые структуры на гиперболической поверхности. Итак, огромное количество эллиптических кривых может быть соотнесено с модулярными функциями. Но какие эллиптические кривые можно получить таким способом? Именно этот вопрос оказался главным.


Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное