Мы вынуждены брать эти числа парами, так как два числа вида 4
Этот пример показывает, что аргумент «множители должны быть единственными, поскольку они минимальны», в данном случае не работает. Правда, здесь есть числа и меньше (21 = 3 × 7, к примеру), но эти числа не принадлежат к интересующей нас системе. Главная же причина того, что этот пример не является полностью репрезентативным, заключается в том, что, хотя при умножении числа вида 4
Второй пример не имеет этого недостатка, но он более сложен. Это кольцо алгебраических целых для многочлена
Можно доказать, что все четыре множителя (2, 5, 5 + √15, 5 — √15) являются простыми{26}
.Сегодня все это выглядит гораздо понятнее, чем в 1847 г., но математикам не потребовалось много времени, чтобы показать обоснованность сомнений Лиувилля. Через две недели после доклада Ванцель проинформировал Академию, что для небольших
Доказательство Ламе работало для небольших значений
Куммер тоже искал доказательство Великой теоремы Ферма, и мысль его работала примерно в том же направлении, что и у Ламе. Он вовремя заметил потенциальное препятствие и отнесся к нему серьезно: проверил и обнаружил, что оно губит этот подход к доказательству. Он нашел конкретный пример неединственного разложения на простые делители для круговых чисел на основе корней 23-й степени из единицы. Но Куммер был не из тех, кто легко сдается, и ему удалось обойти препятствие или по крайней мере смягчить худшие его следствия. Его идею можно продемонстрировать особенно наглядно на примере все тех же чисел вида 4
Куммер предложил другой вариант этой же идеи. К примеру, чтобы восстановить единственность разложения на простые множители в кольце чисел
и
Таким образом, при разных вариантах группировки четырех чисел √5, √5, √5 + √3, √5 — √3 возникает два варианта факторизации.
Куммер назвал эти новые множители идеальными числами, поскольку в его общих формулировках они вообще не считались числами в полной мере. Они были символами, которые вели себя в значительной степени как числа. Он доказал, что любое круговое целое число может быть единственным образом разложено на простые идеальные числа. Довольно тонкая схема: ни круговые числа, ни идеальные числа сами по себе не имели единственного разложения на простые множители. Но если воспользоваться идеальными числами как ингредиентами разложения для круговых чисел, то результат получался единственно возможным.