Если у Ферма действительно было доказательство, то найти его так никому и не удалось. В конце концов теорема была доказана в 1995 г., больше чем через три с половиной столетия после появления, но методы доказательства выходят далеко за рамки методик, доступных во времена Ферма или даже таких, которые он мог бы сам изобрести. Надо сказать, что поиски доказательства этой теоремы оказали громадное влияние на развитие математики. По существу, именно они привели к созданию алгебраической теории чисел, которая расцвела в XIX в. благодаря очередной неудачной попытке доказать теорему и блестящей идее, которая едва не спасла доказательство. В конце XX — начале XXI в. она дала толчок настоящей революции.
Вначале математики, работавшие над Великой теоремой Ферма, пытались перебирать степени одну за другой. Общего доказательства теоремы, о котором говорил ее автор в заметке на полях, могло и не быть, но нам известно, как Ферма доказал свою теорему для четвертых степеней. Главный инструмент здесь — евклидова методика поиска пифагоровых троек. Четвертая степень числа — это квадрат квадрата этого числа. Так что любое решение уравнения Ферма для четвертых степеней — это пифагоров треугольник, в котором все три числа также являются полными квадратами. Это дополнительное условие можно ввести в методику Евклида и после некоторых хитрых маневров получить еще одно
решение уравнения Ферма для четвертых степеней. Может показаться, что в этом нет никакого особого прогресса; после страницы алгебраических вычислений задача сводится к первоначальной. Однако на самом деле это нам поможет: числа во втором решении меньше, чем в первом (гипотетическом). Главное, если первое решение нетривиально (т. е. если x и y в нем не равны нулю), то же можно сказать и о втором решении. Ферма указывал, что повторение этой процедуры даст нам последовательность решений, в которой числа становятся все меньше и меньше. Однако любая убывающая последовательность целых чисел должна когда-нибудь остановиться. Это логическое противоречие, так что гипотетического решения, с которого все началось, не существует. Ферма назвал этот метод доказательства методом «бесконечного спуска». Мы сегодня назвали бы его доказательством по методу математической индукции, упомянутому в главе 4. Его, кстати, тоже можно переформулировать в терминах минимальных контрпримеров, или в данном случае минимальных положительных примеров. Предположим, существует положительный пример — нетривиальное решение нашего уравнения. Тогда существует и минимальный положительный пример. Но, согласно рассуждениям Ферма, это означает, что существует еще меньший пример, а это уже противоречие. Следовательно, положительных примеров не существует. Со времен Ферма появились и другие доказательства теоремы для четвертых степеней, и на сегодняшний день их известно около 30.Ферма использовал тот простой факт, что четвертая степень — это особый случай квадрата. Та же идея показывает, что в целях доказательства теоремы Ферма можно считать, что показатель степени n
либо равен 4, либо является нечетным простым числом. Любое число n больше 2 делится либо на 4, либо на некоторое нечетное простое p, так что любая n-я степень — это одновременно либо 4-я степень, либо p-я[5]. За два столетия после Ферма его Великую теорему удалось доказать ровно для трех нечетных простых чисел: это 3, 5 и 7. С кубами разобрался Эйлер в 1770 г.; в его опубликованном доказательстве есть пробел, но его можно заполнить при помощи результата, опубликованного им же в другом месте. С пятыми степенями справились Лежандр и Петер Лежен Дирихле около 1825 г. Теорему Ферма для седьмых степеней доказал Габриель Ламе в 1839 г. Позже для этих случаев было найдено немало других доказательств. Где-то по пути несколько математиков получили доказательства для степеней 6, 10 и 14, но эти результаты перекрывались доказательствами для 3, 5 и 7.Каждое из упомянутых доказательств использует какие-то алгебраические черты, присущие именно этим степеням. Долгое время не было никаких намеков на какую бы то ни было общую структуру, которая могла бы послужить основой доказательства теоремы для всех или хотя бы для значительного числа разных степеней. С ростом показателей степени доказательства становились все сложнее и сложнее. Требовались свежие идеи, открывающие новые горизонты. Софи Жермен, одна из величайших женщин-математиков, разделила теорему Ферма для простых степеней p
на два случая. В первом случае ни одно из чисел x, y, z не делится на p. Во втором — одно из них делится. Рассмотрев особые «вспомогательные» простые числа, связанные с p, она доказала, что в первом случае уравнение Ферма не имеет решений для нечетных простых чисел меньших 100. Однако трудно было доказать что-нибудь насчет вспомогательных простых чисел в целом.