Жермен переписывалась с Гауссом, причем сначала под мужским псевдонимом, и оригинальность ее рассуждений весьма впечатлила великого математика. Когда же выяснилось, что его корреспондент — женщина, Гаусс впечатлился еще сильнее и прямо сказал об этом. В отличие от многих своих современников, Гаусс не считал женщин неспособными к высокоинтеллектуальной деятельности, в частности к математическим исследованиям. Позже Жермен предприняла неудачную попытку доказать первый случай Великой теоремы Ферма для всех четных чисел, где опять же можно было бы воспользоваться евклидовой характеристикой пифагоровых троек. Окончательно разобраться с четными степенями удалось только Гаю Тержаняну в 1977 г. Второй случай казался куда более крепким орешком, и никто особенно далеко с ним и не продвинулся.
В 1847 г. Ламе, опираясь на свое доказательство для седьмых степеней, выдвинул замечательную идею. Для ее реализации требовалось ввести комплексные числа, но к тому моменту это уже никого не смущало. Главным ингредиентом было то же, чем воспользовался Гаусс при построении своего правильного 17-угольника (см. главу 3). Любой специалист по теории чисел знал об этом, но до Ламе никому не приходило в голову, что этим можно воспользоваться для доказательства Великой теоремы Ферма.
В системе действительных чисел единица имеет ровно один корень
Согласно уравнению Ферма, это выражение равно также
В марте 1847 г. Ламе выступил с полученным в результате доказательством теоремы Ферма в Парижской академии и сказал, что основной идеей он обязан Жозефу Лиувиллю. Лиувилль поблагодарил Ламе, но одновременно указал на потенциальную проблему в доказательстве. Дело в том, что главное утверждение о том, что каждый сомножитель представляет собой
У других математиков сомнения возникли даже раньше. За три года до этого Готтхольд Эйзенштейн писал одному из коллег:
«Если бы у кого-то была теорема, которая утверждала бы, что произведение двух комплексных чисел может делиться на простое число, только если на него делится один из множителей, — что кажется совершенно очевидным, — то он получил бы целую теорию [алгебраических чисел] разом; но такая теорема совершенно неверна».