Теорема, о которой идет речь, есть главный шаг, необходимый для доказательства единственности разложения на простые множители. Эйзенштейн говорил не только о числах, нужных Ламе, но и об аналогичных числах, возникающих при решении других уравнений. Они называются алгебраическими числами. Алгебраическое число — это комплексное число, удовлетворяющее полиномиальному уравнению с рациональными коэффициентами. Алгебраическое целое число — это комплексное число, удовлетворяющее полиномиальному уравнению с целыми коэффициентами, если коэффициент при наибольшей степени
Если, к примеру, взять многочлен
В алгебраической теории чисел сложность заключается не в том, чтобы найти множители. К примеру, круговое число является делителем другого кругового числа, если второе число можно получить умножением первого на еще какое-нибудь круговое число. Определить простые числа также не сложно: круговое целое число является простым, если у него нет других делителей, кроме тривиальных единиц, которые представляют собой круговые числа — делители 1. Нет проблемы и в разложении кругового числа или любого другого алгебраического числа на простые множители. Нужно просто делить число, пока не закончатся делители. Существует простой способ доказать, что эта процедура конечна, и когда она завершится, каждый делитель окажется простым. Так в чем же проблема? В единственности. Если вы повторите процедуру, выбирая по пути иные решения, вы вполне можете получить другой набор простых делителей.
На первый взгляд, трудно представить себе такую возможность. Простые делители — наименьшие возможные кусочки, на которые можно разбить число. Это как взять собранную из «Лего» игрушку и разобрать на кирпичики. Если бы существовал другой способ сделать это, то, в конце концов, оказалось бы, что мы разделили один из кирпичиков еще на несколько деталей. Но тогда кирпичик не был бы кирпичиком. К несчастью, аналогия с «Лего» обманчива. Алгебраические числа ведут себя не так. Они больше похожи на кирпичики с мобильными связями, способные соединяться между собой в разных сочетаниях. Разбейте кирпичик одним способом — получите одни составные части, которые сцепляются друг с другом и дальше уже не делятся. Разбейте его иначе — и получите еще один набор с теми же свойствами, но уже других деталей.
Я приведу два примера. В первом будут только обычные целые числа. Он несложен для понимания, но обладает некоторыми нерепрезентативными чертами. А затем я покажу вам настоящий пример.
Представьте, что мы живем во Вселенной, где существуют только числа 1, 5, 9, 13, 17, 21, 25 и т. д. — числа, которые в нашей нынешней Вселенной имели бы вид 4
Однако такое разложение на простые множители не единственно. Рассмотрим число 4389. 4389 = 4 × 1097 + 1, т. е. это число интересующего нас вида. Вот три различных разложения на множители заданного вида:
Я утверждаю, что, согласно принятому нами определению, все эти множители простые. К примеру, 57 — простое число, так как его обычные делители 3 и 19 не относятся к требуемому виду. То же можно сказать о числах 21, 33, 77, 133 и 209. Теперь мы можем объяснить неединственность разложения на простые множители. В обычных целых числах
и все эти числа «не того» вида, они нам не подходят и имеют вид 4