Читаем Величайшие математические задачи полностью

В 1631 г. Ферма получил ученую степень юриста в университете Орлеана и был назначен советником в суд Тулузы. Это назначение принесло ему дворянский титул и дало право добавлять к фамилии частицу «де»: де Ферма. Советником суда и практикующим юристом он оставался до конца жизни. Однако страстью его была математика. Он почти ничего не публиковал, предпочитая излагать свои открытия в письмах к коллегам-математикам, как правило, без доказательств. В математике Ферма так и остался любителем, но его работы пользовались заслуженным признанием профессионалов, со многими из которых он был знаком достаточно близко, хотя и по переписке. По существу, он и был профессионалом; просто не занимал в математике никакого официального поста.

Некоторые из его доказательств дошли до нас в письмах и заметках; ясно, что Ферма прекрасно представлял себе, что такое настоящее доказательство. После его смерти многие из его наиболее глубоких теорем остались недоказанными, и за них взялись профессионалы. Через несколько десятилетий лишь одному из утверждений Ферма по-прежнему недоставало доказательства; естественно, именно это утверждение получило известность как его последняя теорема. В отличие от остальных, она никак не поддавалась усилиям математиков и вскоре прославилась контрастом между простотой формулировки и очевидной сложностью поиска доказательства.

Судя по всему, Ферма пришел к своей знаменитой теореме около 1630 г. Точная дата неизвестна, но произошло это вскоре после того, как он начал читать недавно изданную «Арифметику» Диофанта. Тогда у него и появилась идея этой теоремы. Опубликована она была впервые в 1670 г., через пять лет после смерти Ферма. Его сын Самюэль выпустил необычное издание «Арифметики» Диофанта, которое включало и заметки на полях, сделанные Пьером Ферма в его личном экземпляре латинского перевода. Этот перевод был сделан Клодом Гаспаром Баше де Мезириаком и издан в 1621 г. Великая теорема Ферма изложена там в виде заметки к диофантову вопросу VIII Книги II (см. рис. 29).

Речь в этом месте книги шла о задаче представления полного квадрата как суммы двух полных квадратов. Из главы 6 мы знаем, что таких пифагоровых троек существует бесконечное множество. Диофант задается тем же вопросом, но в несколько более сложной формулировке: как найти две меньшие стороны пифагорова треугольника, если известна самая большая его сторона. Иными словами, конкретный квадрат следует «разложить» на два квадрата и выразить в виде их суммы. Он показывает, как решить эту задачу, если бо́льшая сторона треугольника равна 4, и получает ответ

4² = (16/5)² + (12/5)²

в рациональных числах. Умножив все на 25, получим 20² = 16² + 12², а поделив затем на 16, получим знакомое 3² + 4² = 5². Диофант обычно иллюстрировал общие методы конкретными примерами и не приводил никаких доказательств; такая традиция восходит еще к Древнему Вавилону.



Экземпляр «Арифметики» с собственноручными заметками Ферма не сохранился, но, должно быть, такая запись в нем была, поскольку Самюэль прямо об этом говорит. Вряд ли Ферма стал бы долго таить такое сокровище, да и само предположение настолько естественно, что мысль о нем, вероятно, пришла Пьеру в голову сразу же по прочтении восьмого вопроса второй книги «Арифметики». Очевидно, ему стало интересно, можно ли проделать что-нибудь подобное с кубами вместо квадратов — согласитесь, естественный для математика вопрос. Он не нашел подобных примеров — мы можем быть в этом уверены, поскольку точно знаем, что их не существует; неудача ждала его и в случае с более высокими степенями, к примеру с четвертой. Он решил, что эти задачи не имеют решений. Заметка на полях говорит именно об этом. В переводе это звучит примерно так:

«Невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него».

Говоря алгебраическим языком, Ферма, согласно его собственному заявлению, доказал, что диофантово уравнение

xn + yn = zn

не имеет целочисленных решений, если n — любое целое число, большее или равное 3. Ясно, что при этом он не рассматривал тривиальных решений, при которых x или y равны нулю. Чтобы не повторять это уравнение постоянно, я буду называть его в дальнейшем уравнением Ферма.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное