Читаем Вероятности и неприятности. Математика повседневной жизни полностью

Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего числа слов, принесло бы наибольшую информацию?

Я считаю, что это атомная гипотеза: все тела состоят из атомов — маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольших расстояниях, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения[40].

Исходя из этой гипотезы, статистическая физика дает фундаментальное объяснение практически всему, что мы наблюдаем и измеряем в масштабах кристалла, человеческого тела или звезды.

В рамках этой науки распределение Гиббса отвечает на вопрос, какова вероятность встретить некое состояние подсистемы, если даны: а) энергия состояния; б) макроскопические (условно говоря, глобальные) свойства системы, например температура; в) известно, что система находится в термодинамическом равновесии. В последней фразе достаточно много терминов, не характерных для нашей книги: энергия, температура, равновесие… Но как в самом начале мы положились на интуитивное понимание вероятности, а потом дополнили его строгими определениями, так и сейчас я предполагаю, что читатель знаком с этими понятиями хотя бы из школьного курса физики. Чуть позже мы разберемся с тем, какое отношение все это имеет к нашим экономическим моделям.

Распределение Гиббса может быть схематично выражено следующей формулой:

где x — некое состояние подсистемы, E(x) — энергия этого состояния, Т — абсолютная температура системы (или ее аналог), а C и k — величины, необходимые для нормировки и соответствия размерностей. Очень важное условие равновесия означает, что из рассмотрения исчезает время и что вся система окажется в наиболее вероятном своем состоянии для заданных условий.

Строгий вывод выражения для распределения Гиббса нам здесь не нужен, вместо него я покажу красивейшее, чисто математическое рассуждение, приводящее к его экспоненциальной форме.

Поскольку рассматриваются части системы, которые в сумме дают всю систему, то и в качестве их характеристики стоит выбрать какую-нибудь аддитивную величину, играющую роль меры. Напомню, что значение аддитивной величины для ансамбля равно арифметической сумме значений этой величины для его частей. В качестве такой величины в механике можно использовать энергию. С другой стороны, мы вычисляем вероятность того, что будем наблюдать некоторое состояние системы. Если ее можно разбить на части, то вероятность наблюдать их все одновременно будет равна произведению вероятностей для состояния каждой из частей. Таким образом, нам нужна функция, превращающая аддитивную величину в мультипликативную:

f(x+y) = f(x)f(y).

Если отбросить тривиальное решение f(x) ≡ 0, то таким свойством обладает только показательная функция f(x) = ax, которая сумму аргументов превращает в произведение значений: ax+y = axay. Ну а из всех показательных функций наиболее удобна экспонента, поскольку она очень хорошо ведет себя при интегрировании и дифференцировании.

Насколько универсально распределение Гиббса? Напомню, что это распределение количества частиц по энергиям. Такое распределение можно получить, рассматривая тепловое движение молекул газа, а потом только из него можно вывести (не пронаблюдать в эксперименте, а получить математически) уравнение состояния идеального газа, знакомое со школы под названием уравнения Менделеева — Клапейрона. В твердом теле, например кристалле, к энергии движения частиц добавляется сила упругости (притягивания и отталкивания), но базовым распределением по полной энергии все равно останется распределение Гиббса. Если мы сосредоточимся на энергии частиц в поле силы тяжести, то вновь получим экспоненциальное распределение. На этот раз оно будет носить имя Людвига Больцмана, автора точного выражения для энтропии. Распределение Больцмана покажет нам, как изменяется плотность газа с высотой. Экспоненциальное распределение — как распределение с максимальной энтропией — база, с которой начинается исследование сложной физической системы.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги