Читаем Вероятности и неприятности. Математика повседневной жизни полностью

Каждому распределению случайной величины — неважно, задаваемому аналитически или полученному экспериментально в виде гистограммы — можно поставить в соответствие положительное число — его энтропию. Это, в свою очередь, задает метрику на пространстве распределений, давая нам возможность сравнивать их между собой, определяя более или менее равновесные и вероятные распределения для заданных условий. Более того, для некоторого класса распределений можно выделить одно с максимальной энтропией — и только одно. Классы определяются ограничениями, или мерой нашего знания о статистических свойствах системы. Приведем самые важные примеры распределений, имеющих наибольшую энтропию.

Знакомые всё лица! Это очень часто используемые распределения, которые статистики применяют к широчайшему классу задач. Их универсальность обусловлена именно тем, что они, имея максимальную энтропию, наиболее вероятны и наблюдаются чаще других. К ним, как к равновесным, стремятся многие распределения реальных случайных величин.

Наиболее свободно от ограничений нормальное распределение: оно требует минимума информации о случайной величине. Меньше уже не получится: если мы укажем лишь среднее значение, то при попытках увеличить энтропию распределение «размажется» по всей числовой оси. Зато если мы знаем лишь среднее, но при этом ограничим случайную величину положительными значениями, то равновесное распределение будет однозначным — экспоненциальным. Именно этот случай мы и наблюдали в нашем эксперименте с рынком. Нам заранее было известно лишь то, сколько денег мы выдали каждому игроку, и то, что их количество в системе неизменно. Эта информация фиксирует среднее значение. А поскольку количество денег у нас — величина положительная, то, вероятнее всего, в равновесии мы получим именно экспоненциальное распределение.

В численном эксперименте можно вычислять энтропию нашей системы по мере приближения модели рынка к равновесию. Пример такого графика приведен на рис. 9.7. Обратите внимание на то, что ось X логарифмическая. Благодаря этому мы сможем одинаково внятно увидеть как начальные этапы развития модели, так и ее поведение для очень большого числа обменов, и в то же время логарифмическая шкала позволяет четко выделить отдельные этапы эволюции модельной системы. Буквы здесь соответствуют распределениям, показанным на рис. 9.5.


Рис. 9.7. Рост энтропии, наблюдающийся по мере приближения рынка к равновесному состоянию. Горизонтальной линией на графике показано теоретическое значение энтропии для экспоненциального распределения


Начальное состояние (вырожденное, при котором все участники группы располагают равными суммами) имеет нулевую энтропию; о том, что это значит, мы скажем чуть позже. Первые десятки обменов до состояния (a) лишь немного ее увеличивают, распределение все равно остается близким к вырожденному. Но далее оно становится очень похожим на нормальное, начинается диффузионный процесс, сопровождающийся линейным ростом энтропии на нашем графике. Если вы заглянете в таблицу выше, то увидите, что энтропия нормального распределения пропорциональна логарифму от стандартного отклонения. Именно эту пропорциональность и показывает нам график энтропии в выбранном нами логарифмическом масштабе. Теперь мы можем интерпретировать появление здесь нормального распределения как наиболее вероятного для случайной величины, о которой мы знаем лишь ее среднее (оно остается неизменным) и дисперсию (она растет, как в процессе случайного блуждания). Наконец, в состоянии (c) система начинает «чувствовать» дно и симметричность распределения нарушается, после чего оно постепенно достигает равновесного.

Не знаю, как читателю, а мне показалось обидным, что изначально справедливое распределение после серии абсолютно симметричных и беспристрастных обменов само по себе приходит к несправедливости. Мы уже говорили, что коэффициент Джини для экспоненциального распределения в точности равен 1/2 и при таком распределении половина всех денег принадлежит богатейшим 20 % группы. С другой стороны, может порадовать то обстоятельство, что эта несправедливость возникает не вследствие греховной человеческой натуры, а из-за натуры больших ансамблей взаимодействующих частиц.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги