Пока наша модель обмена никак не учитывает достатка игроков, она остается нереалистичной. В действительности богатые тратят больше, а бедные меньше; более того, разумные люди стараются сохранить какую-то часть своего состояния. В качестве следующего усложнения модели потребуем, чтобы игроки в процессе перераспределения отдавали некую известную долю своего состояния Δ
В систему вводятся новый параметр и новое ограничение; следовательно, равновесное состояние должно как-то отклониться от экспоненциального. Оперируя долями от уровня благосостояния, мы переходим к мультипликативным характеристикам, таким, например, как
Рис. 9.10.
Если расходы при обмене пропорциональны достатку, равновесное распределение стремится к характерному несимметричному колоколообразному гамма-распределению. В данной модели α = 1/3Для имитационного моделирования был реализован такой алгоритм пропорционального обмена.
Исходные данные
: xs — массив из n элементов, инициализированный значениями m, alpha — доля капитала, которая тратится при обмене.Повторять
· · · · i <- случайное целое от 0 до n
если xs[i] > 0
· · · · · · · · dx <- floor(xs[i]*alpha)
xs[i] <- xs[i] — dx
· · · · · · · · j <- случайное целое от 0 до n
xs[j] <- xs[j] + dx
Эта книга — хоть и популярная, но все же математическая. Это значит, что все результаты, попавшие на ее страницы, имеют доказательства или строгий вывод, пусть зачастую и остающиеся за пределами изложения в силу их громоздкости. И хотя для дальнейшего изложения этот результат не нужен, я приведу точное и довольно изящное выражение для распределения, которое мне удалось получить для модели пропорционального обмена.
Гамма-распределение
Но вернемся к гамма-распределению. Для него верно, что:
если
Наконец, гамма-распределение масштабируемо:
если
Все эти свойства позволили получить распределение благосостояния для нашей модели со средним значением
В модели обмена фиксированной суммой вероятность потерять все деньги была достаточно велика. В модели пропорционального обмена она оказывается равна нулю. Это связано с тем, что бедные тратят в среднем меньше, чем получают от богатых, ведь и те и другие обмениваются долями своего капитала. Но этот социальный лифт действует только при α < 1/2. Если тратить больше половины того, что имеешь, вероятность оказаться в бедняках становится не просто отличной от нуля, а весьма ощутимой. Для различных значений можно получить различающиеся по форме распределения с широким диапазоном несправедливости (рис. 9.11).