Читаем Вероятности и неприятности. Математика повседневной жизни полностью

Наша модель предельно проста. Существует множество ее модификаций: передаваемая сумма Δm может быть не фиксированной, а случайной величиной, ограниченной состоянием участника; при этом можно не давать деньги какому-то одному игроку, а распределять случайным образом. Пока мы не вводим новых параметров, все эти модификации не меняют форму равновесного распределения богатства — оно остается экспоненциальным. Многие исследователи отмечали эту особенность моделей рынка. В устойчивости решения можно убедиться с помощью имитационного моделирования, но приводить картинки для различных способов обмена неинтересно — все они будут одинаковыми. Любопытна модель, построенная Адрианом Драгулеску и Виктором Яковенко из Мэрилендского университета[41]. В ней игроков объединяют в некие «компании», а далее имитируется взаимодействие компаний с игроками-работниками и игроками-покупателями. Но и в этом, уже достаточно сложном случае равновесным оказывается экспоненциальное распределение, безразличное к выбираемым параметрам модели.

Загадочная и могущественная энтропия — это, конечно, солидно и, возможно, даже убедительно. Но почему же при симметричном обмене бедных становится больше, чем богатых? Почему мода равновесного распределения равна нулю? Надо, как говорят физики, разобраться в кинетике процесса, в судьбе отдельных частиц.

Мы не ошиблись, предположив, что модель случайного блуждания описывает изменение состояния отдельного участника торгов: он с равной вероятностью совершает шаги как вверх, так и вниз. Мы уже говорили о том, что случайно блуждающая частица обязательно окажется в любом наперед указанном месте. При этом ожидаемое расстояние, на которое частица удалится от какой-либо начальной точки, оказывается пропорционально квадратному корню от числа шагов. Все это приводит к тому, что если частица начинает свой путь вблизи нуля, то она с высокой вероятностью его достигнет, а поскольку ноль в нашей задаче — непроницаемая граница, она будет вынуждена вновь и вновь начинать свой путь около нулевой точки, с большой вероятностью быстро к ней возвращаясь. По мере удаления частицы от нуля вероятность к нему вернуться уменьшается и у богатых становится больше шансов сберечь свое состояние.

Но тогда что же мешает частице удалиться сколь угодно далеко, а конкретному игроку стать сколь угодно богатым? Вообще-то ничего, кроме конечности денег в системе: экспоненциальное распределение отлично от нуля на всей положительной полуоси. Но чтобы достичь невероятного богатства по правилам нашей игры, нужно, чтобы какой-то ее участник случайно получил систематическое преимущество перед остальными. Выбор, кому отдать деньги в нашей модели, падает на всех одинаково, а это значит, что доставаться они будут не только богатым, но и бедным. Есть в этом мире справедливость, хоть и торжествующая совсем недолго, для того, кто растерял все свое богатство.

Игры с энтропией

Если понятие энтропии помогло предсказать и объяснить экспоненциальное распределение в простейшей модели рынка, то, быть может, оно окажется полезным и в более сложных моделях? Мы станем добавлять ограничения в модель рынка, делать предположение о форме распределения исходя из принципа максимума энтропии, а потом проверять результат с помощью имитационного моделирования.

Для начала искусственно ограничим сверху уровень богатства отдельного игрока, запретив ему получать деньги, если у него уже есть некая фиксированная сумма xmax. В случае, если m = xmax/2, мы приходим к варианту, описанному в первом ряду таблицы распределений с максимальной энтропией. Действительно, ограничивая случайную величину конечным отрезком и не указывая больше ничего, мы не можем предположить никакого другого ожидаемого значения среднего, кроме середины этого отрезка (рис. 9.8). Следовательно, равновесным распределением при таком варианте должно быть равномерное. Проверим, так ли это, воспользовавшись следующим алгоритмом.


Рис. 9.8. Вот что происходит при ограничении сверху возможного уровня богатства игроков, причем таким образом, что верхняя граница ровно вдвое превышает среднее значение


Исходные данные: xs — массив из n элементов, инициализированный значениями m, xMax — максимальная разрешенная сумма.

Повторять

· · · · i <- случайное целое от 0 до n

если xs[i] > 0

· · · · · · · · j <- случайное целое от 0 до n

если xs[j]

xs[i] <- xs[i] — 1

xs[j] <- xs[j] + 1


Надо заметить, что мы получили довольно любопытный результат. Каждый из участников группы все еще испытывает случайное блуждание, но никто не «прилипает» к границам и в группе происходит равномерное перемешивание. Напомню, что коэффициент Джини для равномерного распределения равен 1/3, что уже существенно лучше, чем 1/2 для экспоненциального распределения, так что ограничения могут пойти на пользу.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги