Читаем Внутреннее устройство Linux полностью

Несмотря на то что менеджер NetworkManager может вам понадобиться для управления большинством сетевых интерфейсов, иногда возникают ситуации, когда необходимо игнорировать интерфейсы. Например, нет причин для того, чтобы большинству пользователей понадобился какой-либо тип динамической конфигурации интерфейса локального хоста (lo), так как эта конфигурация никогда не меняется. Может также потребоваться настроить этот интерфейс на ранних стадиях процесса загрузки системы, поскольку основные системные службы часто зависят от него. В большинстве версий ОС менеджер NetworkManager не допускается к локальному хосту.

Можно дать указание менеджеру NetworkManager, чтобы он игнорировал какой-либо интерфейс, используя плагины. Если вы применяете плагин ifupdown (например, в Ubuntu и Debian), добавьте конфигурацию интерфейса в файл /etc/network/interfaces, а затем в секции ifupdown файла NetworkManager.conf установите для параметра managed значение false:

[ifupdown]

managed=false

Для плагина ifcfg-rh, который используется в Fedora и Red Hat, поищите строку, подобную приведенной ниже, в каталоге /etc/sysconfig/network-scripts, который содержит конфигурационные файлы ifcfg-*:

NM_CONTROLLED=yes

Если такой строки нет или установлено значение no, менеджер NetworkManager игнорирует данный интерфейс. Например, вы обнаружите, что он деактивизирован в файле ifcfg-lo. Можно также указать адрес аппаратного средства, которое следует игнорировать:

HWADDR=10:78:d2:eb:76:97

Если вы не используете ни одну из этих схем сетевой конфигурации, можно применить плагин keyfile, чтобы указать неуправляемое устройство прямо в файле NetworkManager.conf с помощью адреса MAC. Это могло бы выглядеть так:

[keyfile]

unmanaged-devices=mac:10:78:d2:eb:76:97;mac:1c:65:9d: cc:ff:b9

Диспетчеризация

Одна из завершающих деталей конфигурации менеджера NetworkManager относится к указанию дополнительных системных действий для тех случаев, когда сетевой интерфейс становится активным или отключается. Например, некоторым сетевым демонам для корректной работы необходимо знать, когда начать или завершить прослушивание интерфейса (например, демону защищенной оболочки, о которой пойдет речь в следующей главе).

Когда статус сетевого интерфейса в системе меняется, менеджер NetworkManager запускает все, что находится в каталоге /etc/NetworkManager/dispatcher.d с каким-либо из аргументов, таким как up или down. Это сравнительно просто, однако во многих версиях ОС используются собственные сценарии управления сетью, поэтому в указанном каталоге нет отдельных сценариев диспетчеризации. В Ubuntu, например, применяется всего один сценарий — 01ifupdown, который запускает все, что расположено в соответствующем подкаталоге каталога /etc/network, например в /etc/network/if-up.d.

Что касается остальной конфигурации менеджера NetworkManager, подробности сценариев не так уж важны; вам необходимо знать лишь о том, как определить соответствующее местоположение, если вам потребуется внести изменения. И, как обычно, заглядывайте в сценарии собственной системы.

9.12. Разрешение имени хоста

Одной из заключительных задач любого сетевого конфигурирования является разрешение имени хоста с помощью службы DNS. Вы уже видели инструмент host, который переводит имя, такое как www.example.com, в IP-адрес вроде 10.23.2.132.

Служба DNS отличается от рассмотренных нами элементов сети, так как она расположена на прикладном уровне, полностью в пространстве пользователя. Технически она немного не на своем месте в данной главе, рядом с обсуждением интернет-уровня и физического уровня. Но при неправильной конфигурации DNS ваше интернет-подключение практически бесполезно. Никто не станет рекламировать IP-адреса вместо имен сайтов и адресов электронной почты, поскольку IP-адрес хоста может измениться, да и набор чисел запомнить непросто. Автоматические службы сетевой конфигурации, такие как DHCP, почти всегда содержат конфигурацию DNS.

Практически все сетевые приложения в Linux выполняют поиски DNS. Процесс разрешения имен обычно протекает следующим образом.

1. Приложение вызывает функцию, чтобы выяснить IP-адрес, который стоит за именем хоста. Эта функция находится в совместно используемой системной библиотеке, поэтому приложению не нужно знать подробности о том, как она работает, или об изменениях в ее реализации.

2. Когда эта функция запускается, она действует в соответствии с набором правил (расположенных в файле /etc/nsswitch.conf), чтобы установить план действий при поисках. Например, такие правила обычно говорят о том, что перед переходом к DNS следует проверить ручное переопределение в файле /etc/hosts.

3. Когда функция решает использовать службу DNS для поиска имени, она обращается к дополнительному файлу конфигурации, чтобы найти сервер имен DNS. Сервер имен представлен в виде IP-адреса.

4. Функция отправляет DNS-запрос на поиск (по сети) серверу имен.

5. Сервер имен сообщает в ответ IP-адрес имени хоста, а функция возвращает этот IP-адрес приложению.

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT