Читаем Внутреннее устройство Linux полностью

Параметр files помещен перед параметром dns, чтобы система искала запрашиваемый вами IP-адрес в файле /etc/hosts, прежде чем обратиться к серверу DNS. Обычно такой способ хорош (особенно при отыскании локального хоста, как описано ниже), но при этом файл /etc/hosts должен быть по возможности коротким. Не помещайте в него ничего для улучшения производительности, это только навредит вам впоследствии. Можно поместить данные о всех хостах небольшой частной локальной сети в файл /etc/hosts, однако общее правило здесь таково: если у какого-либо хоста есть запись в службе DNS, его не следует указывать в файле /etc/hosts. Файл /etc/hosts полезен также для разрешения имен на ранних этапах загрузки системы, когда сеть может оказаться недоступной.

примечание

Тема, посвященная DNS, достаточно обширна. Если вы каким-либо образом ответственны за доменные имена, прочитайте книгу Крикета Лиу (Cricket Liu) и Пола Альбитца (Paul Albitz) DNS and BIND («Службы DNS и BIND»), 5-е издание (O’Reilly, 2006).

9.13. Локальный хост

Если запустить команду ifconfig, можно заметить интерфейс lo:

lo Link encap: Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr:::1/128 Scope: Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

Интерфейс lo является виртуальным сетевым интерфейсом, который называется возвратной петлей, поскольку он «закольцован» сам на себя. Результат таков, что при подключении к адресу 127.0.0.1 происходит подключение к компьютеру, которым вы пользуетесь в данный момент. Когда исходящие данные для локального хоста доходят до сетевого интерфейса lo в ядре, ядро просто заново упаковывает их как входящие данные и отправляет обратно через интерфейс lo.

Интерфейс возвратной петли lo часто является единственным местом, где можно увидеть статическую сетевую конфигурацию в сценариях загрузки системы. Так, например, команда ifup в Ubuntu читает файл /etc/network/interfaces, а в Fedora используется файл /etc/sysconfig/network-interfaces/ifcfg-lo. Часто можно обнаружить конфигурацию какого-либо устройства с возвратной петлей, если поискать в каталоге /etc с помощью команды grep.

9.14. Транспортный уровень: протоколы TCP, UDP и службы

До сих пор мы видели лишь то, как пакеты перемещаются от хоста к хосту по сети Интернет, другими словами, ответ на вопрос «куда?» из начала этой главы. Теперь начнем отвечать на вопрос «что?». Важно знать, как ваш компьютер представляет данные пакета, которые он получает от других хостов, своим работающим процессам. Для команд из пространства пользователя трудно и неудобно иметь дело с набором пакетов таким образом, как с ними может работать ядро. В особенности важна гибкость: сразу несколько приложений должны иметь возможность одновременного обращения к сети (например, вам может потребоваться запустить почтовый клиент и браузер).

Протоколы транспортного уровня заполняют разрыв между необработанными пакетами интернет-уровня и «рафинированными» потребностями приложений. Двумя самыми популярными транспортными протоколами являются TCP (Transmission Control Protocol, протокол управления передачей) и UDP (User Datagram Protocol, протокол передачи дейтаграмм пользователя). Мы сосредоточимся на протоколе TCP, так как он безоговорочно является наиболее используемым, и вкратце рассмотрим и протокол UDP.

9.14.1. Порты TCP и соединения

Протокол TCP предоставляется нескольким сетевым приложениям на одном компьютере с помощью сетевых портов. Порт — это просто число. Если IP-адрес можно уподобить почтовому индексу какого-либо жилого дома, то порт похож на номер почтового ящика: это дальнейшее деление на более мелкие части.

При использовании протокола TCP приложение открывает соединение (не смешивайте с подключениями в менеджере NetworkManager) между одним из портов данного компьютера и каким-либо портом удаленного хоста. Например, такое приложение, как браузер, могло бы открыть соединение между портом 36406 компьютера и портом 80 удаленного хоста. С точки зрения приложения порт 36406 является локальным портом, а порт 80 — удаленным портом.

Можно идентифицировать соединение с помощью пары, составленной из IP-адреса и номера порта. Чтобы увидеть соединения, которые в данный момент открыты на компьютере, воспользуйтесь командой netstat. Приведем пример, в котором показаны TCP-соединения (параметр — n отключает разрешение имен (DNS), а параметр — t ограничивает результаты только протоколом TCP):

$ netstat — nt

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 10.23.2.4:47626 10.194.79.125:5222 ESTABLISHED

tcp 0 0 10.23.2.4:41475 172.19.52.144:6667 ESTABLISHED

tcp 0 0 10.23.2.4:57132 192.168.231.135:22 ESTABLISHED

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT