Читаем Внутреннее устройство Linux полностью

Имя модуля может содержать некоторые интересные спецификаторы. Можно параметризовать единичный файл модуля, чтобы породить несколько копий какой-либо службы, например процессов getty, работающих в терминалах tty1, tty2 и т. д. Чтобы использовать эти спецификаторы, добавьте символ @ в конец имени модуля. Для процесса getty создайте файл модуля с именем getty@.service, который позволит вам обращаться к таким модулям, как getty@tty1 и getty@tty2. Все, что следует за символом @, называется экземпляром, и при обработке файла модуля команда systemd развертывает спецификатор %I в имя экземпляра. Увидеть это в действии можно на файлах getty@.service, которые входят в большинство систем, использующих команду systemd.

6.4.4. Работа команды systemd

С командой systemd вы будете взаимодействовать главным образом с помощью команды systemctl, которая позволяет активизировать и деактивизировать службы, выводить статус, перезагружать конфигурацию и многое другое.

Наиболее существенные основные команды имеют дело с получением информации о модулях. Например, чтобы увидеть список активных модулей в вашей системе, воспользуйтесь командой list-units. На самом деле эта команда работает по умолчанию при запуске команды systemctl, поэтому часть list-units не нужна:

$ systemctl list-units

Формат вывода типичен для информационных команд Unix. Так, например, выглядит заголовок и строка для модуля media.mount:

UNIT LOAD ACTIVE SUB JOB DESCRIPTION

media.mount loaded active mounted Media Directory

Эта команда выводит много сведений, поскольку в типичной системе большое количество активных модулей, но даже при этом список сокращен, поскольку команда systemctl обрезает все действительно длинные названия модулей. Чтобы увидеть полные имена модулей, используйте параметр — full, а чтобы увидеть все модули (а не только активные) — параметр — all.

Чрезвычайно полезной функцией команды systemctl является получение статуса модуля. Вот, например, типичная команда запроса статуса и результат ее работы:

$ systemctl status media.mount

media.mount — Media Directory

Loaded: loaded (/usr/lib/systemd/system/media.mount; static)

Active: active (mounted) since Wed, 13 May 2015 11:14:55 -0800;

37min ago

Where: /media

What: tmpfs

Process: 331 ExecMount=/bin/mount tmpfs /media — t tmpfs — o

mode=755,nosuid,nodev,noexec (code=exited, status=0/SUCCESS)

CGroup: name=systemd:/system/media.mount

Обратите внимание на то, что информации здесь гораздо больше, чем можно увидеть в любой традиционной системе init. Вы узнаете не только статус модуля, но также и точное название команды, использованной при его монтировании, его идентификатор PID, а также его конечный статус.

Одним из самых интересных фрагментов этого вывода является имя группы управления. В приведенном примере группа управления не содержит никакой информации, кроме имени systemd:/system/media.mount, поскольку процессы модуля уже остановлены. Однако, если вы запросите статус модуля службы, например NetworkManager.service, вы увидите также дерево процессов группы управления. Можно увидеть группы управления без сопутствующего статуса модуля с помощью команды systemd-cgls. О группах управления вы узнаете больше из подраздела 6.4.6.

Команда статуса отображает также последнюю информацию из журнала модуля (этот журнал записывает диагностическую информацию для каждого модуля).

Полный журнал модуля можно увидеть с помощью такой команды:

$ journalctl _SYSTEMD_UNIT=unit

Синтаксис немного странный, поскольку команда journalctl способна получать доступ не только к модулю systemd.

Для активизации, деактивизации и перезапуска модулей используйте команды systemd start, stop и restart. Однако если вы изменили файл конфигурации модуля, можно перезагрузить такой файл одним из двух способов:

• systemctl reload unit — перезагружает только конфигурацию модуля unit;

• systemctl daemon-reload — перезагружает конфигурацию всех модулей.

Запросы на активизацию, повторную активизацию и перезапуск модулей известны как задания для команды systemd, они являются, по сути, изменениями состояния модулей. Узнать о текущих заданиях в системе можно с помощью команды:

$ systemctl list-jobs

Если система уже работает некоторое время, то вполне разумно ожидать, что в ней не будет активных заданий, поскольку все процессы активизации должны быть завершены. Однако во время загрузки системы иногда можно войти в нее настолько быстро, чтобы успеть заметить несколько очень медленно запускающихся модулей, которые еще не полностью активны. Например:

JOB UNIT TYPE STATE

1 graphical.target start waiting

2 multi-user.target start waiting

71 systemd-…nlevel.service start waiting

75 sm-client.service start waiting

76 sendmail.service start running

120 systemd-…ead-done.timer start waiting

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT