Читаем Внутреннее устройство Linux полностью

В данном случае задание 76, запуск модуля sendmail.service, действительно происходит довольно долго. Остальные перечисленные задания находятся в ждущем режиме, скорее всего, потому, что все они ждут задание 76. Когда служба sendmail.service завершит запуск и станет полностью активна, задание 76 и все остальные задания также будут завершены, а список заданий станет пустым.

примечание

Термин задание может сбивать с толку еще и потому, что другая версия команды init, Upstart, описанная в данной главе, использует слово «задание» (в общих чертах) применительно к тому, что команда systemd называет модулем. Важно помнить о том, что, если задание команды systemd, связанное с каким-либо модулем, будет завершено, сам модуль останется активным и в дальнейшем работающим, особенно в случае модулей служб.

Обратитесь к разделу 6.7, чтобы узнать о том, как выключать и перезапускать систему.

6.4.5. Добавление модулей в команду systemd

Добавление модулей заключается в создании, активизации и возможном редактировании файлов модулей. Обычно пользовательские файлы модулей следует помещать в каталог системной конфигурации /etc/systemd/system, чтобы не перепутать их с чем-либо, входящим в состав вашей версии системы, и чтобы система не перезаписала их при обновлении.

Поскольку довольно просто создать целевые модули, которые ничего не делают и ни на что не влияют, давайте попробуем. Ниже приведена процедура создания двух целевых модулей, один из которых зависит от другого.

1. Создайте файл модуля с именем test1.target:

[Unit]

Description=test 1

2. Создайте файл test2.target с зависимостью от файла test1.target:

[Unit]

Description=test 2

Wants=test1.target

3. Активизируйте модуль test2.target (помня о том, что зависимость в файле test2.target вынуждает команду systemd активизировать при этом и модуль test1.target):

# systemctl start test2.target

4. Убедитесь в том, что оба модуля активны:

# systemctl status test1.target test2.target

test1.target — test 1

Loaded: loaded (/etc/systemd/system/test1.target; static)

Active: active since Thu, 12 Nov 2015 15:42:34 -0800; 10s ago

test2.target — test 2

Loaded: loaded (/etc/systemd/system/test2.target; static)

Active: active since Thu, 12 Nov 2015 15:42:34 -0800; 10s ago

примечание

Если в файле модуля есть секция [Install], подключите модуль до его активизации:

# systemctl enable unit

Опробуйте это на предыдущем примере. Удалите зависимость из файла test2.target и добавьте секцию [Install] в файл test1.target, содержащую строку WantedBy=test2.target.

Удаление модулей. Чтобы удалить модуль, выполните следующее.

1. Если необходимо, деактивизируйте модуль:

# systemctl stop unit

2. Если в модуле есть секция [Install], отключите модуль, чтобы удалить все зависимые символические ссылки:

# systemctl disable unit

3. Удалите файл модуля, если желаете.

6.4.6. Отслеживание процессов и синхронизация в команде systemd

Команде systemd необходимы разумное количество информации и степень контроля над каждым запускаемым процессом. Основная проблема заключается в том, что службы могут быть запущены различными способами, они могут ответвляться в виде новых экземпляров и даже становиться демонами и открепляться от исходного процесса.

Чтобы свести к минимуму объем работы, который программист или администратор должен выполнить для создания работающего модуля, команда systemd использует группы управления (cgroups) — необязательную функцию ядра Linux, которая предусматривает более точное отслеживание иерархии процессов. Если вы уже работали до этого с командой Upstart, вы знаете, что необходимо проделывать небольшую дополнительную работу, чтобы выяснить, какой процесс является главным для какой-либо службы. В случае с командой systemd вам не надо беспокоиться о том, сколько раз ветвится процесс, важно лишь то, ветвится ли он. Используйте параметр Type в файле модуля для службы, чтобы указать ее поведение при запуске. Существуют два основных стиля запуска.

• Type=simple — процесс службы не ветвится.

• Type=forking — служба ветвится, и команда systemd ожидает завершения исходного процесса службы. По его завершении команда systemd предполагает, что данная служба готова.

Параметр Type=simple не учитывает тот факт, что службе может потребоваться некоторое время на настройку, а команда systemd не знает, когда запускать зависимости, для которых абсолютно необходима готовность данной службы. Один из способов справиться с этим — использовать отложенный запуск (см. подраздел 6.4.7). Однако с помощью некоторых стилей параметра Type можно указать, чтобы служба сама известила команду systemd о своей готовности:

• Type=notify — когда служба готова, она отправляет уведомление специально для команды systemd (с помощью вызова функции sd_notify());

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT