Читаем Внутреннее устройство Linux полностью

Отсутствующие файлы являются наиболее частым источником ошибок в командах Unix, поэтому если системный журнал и другая информация оказываются не слишком полезными, а обратиться больше не к чему, то команда strace может оказать существенную помощь. Ее можно применить даже для демонов, которые откреплены. Например, так:

$ strace — o crummyd_strace — ff crummyd

В данном примере параметр — o команды strace заносит в журнал действия любого дочернего процесса, который демон crummy породил в crummyd_strace.pid, где pid — это идентификатор дочернего процесса.

8.3.2. Команда ltrace

Команда ltrace отслеживает вызовы совместно используемых библиотек. Результаты ее работы напоминают вывод команды strace, и именно поэтому я упоминаю о ней здесь, но она не отслеживает ничего на уровне ядра. Имейте в виду: вызовов совместно используемых библиотек намного больше, чем системных вызовов. Вам непременно понадобится фильтровать результаты, и у команды ltrace есть множество встроенных параметров, чтобы помочь вам в этом.

примечание

См. подраздел 15.1.4, содержащий дополнительную информацию. Команда ltrace не работает для статически связанных двоичных файлов.

8.4. Потоки

В Linux некоторые процессы разделены на части, называемые потоками. Поток очень похож на процесс: у него есть идентификатор (TID, или ID потока), и ядро планирует запуск потоков и запускает их так же, как и процессы. Однако в отличие от отдельных процессов, которые обычно не используют совместно с другими процессами такие системные ресурсы, как оперативная память и подключение к вводу/выводу, все потоки внутри какого-либо процесса совместно задействуют ресурсы системы и некоторую часть памяти.

8.4.1. Однопоточные и многопоточные процессы

Многие процессы обладают только одним потоком. Процесс с одним потоком является однопоточным, а процесс с несколькими потоками — многопоточным. Все процессы запускаются как однопоточные. Этот стартовый поток обычно называется главным потоком. Затем главный поток может запустить новые потоки, чтобы процесс стал многопоточным, подобно тому как процесс может вызвать команду fork() для запуска нового процесса.

примечание

Если процесс является однопоточным, то о потоках вообще довольно редко упоминают. В этой книге на потоки не обращается внимание, если многопоточные процессы не отражаются на том, что вы видите или осуществляете.

Основное преимущество многопоточных процессов таково: когда процесс должен выполнить много работы, потоки могут быть запущены одновременно на нескольких процессорах, что потенциально ускоряет вычисления. Хотя одновременные вычисления можно организовать и с помощью нескольких процессов, потоки запускаются быстрее процессов и потокам часто бывает проще и/или эффективнее взаимодействовать между собой при совместном использовании памяти по сравнению с процессами, которые взаимодействуют через сетевое соединение или канал.

Некоторые команды применяют потоки, чтобы обойти проблемы при управлении несколькими ресурсами ввода/вывода. Традиционно процесс использовал бы что-либо вроде команды fork(), чтобы запустить новый подпроцесс для работы с новым потоком ввода или вывода. Потоки предлагают похожий механизм без излишнего запуска нового процесса.

8.4.2. Просмотр потоков

По умолчанию в выводе команд ps и top отображаются только процессы. Чтобы показать информацию о потоке в команде ps, добавьте параметр m (пример 8.1).

Пример 8.1. Просмотр потоков с помощью команды ps m

$ ps m

PID TTY STAT TIME COMMAND

3587 pts/3 — 0:00 bash

— Ss 0:00 -

3592 pts/4 — 0:00 bash

— Ss 0:00 -

12287 pts/8 — 0:54 /usr/bin/python /usr/bin/gm-notify

— SL1 0:48 -

— SL1 0:00 -

— SL1 0:06 -

— SL1 0:00 -

В примере 8.1 процессы показаны вместе с потоками. Каждая строка с номером в столбце PID (эти строки отмечены символами , и ) представляет процесс как при обычном выводе команды ps. Строки с дефисами в столбце PID представляют потоки, связанные с данным процессом. В этом выводе у каждого из процессов и только один поток, а процесс 12287 () является многопоточным и состоит из четырех потоков.

Если вы желаете просмотреть идентификаторы потоков с помощью команды ps, можно использовать специальный формат вывода. В примере 8.2 показаны только идентификаторы процессов и потоков, а также сама команда.

Пример 8.2. Отображение идентификаторов процессов и потоков с помощью команды ps m

$ ps m — o pid,tid,command

PID TID COMMAND

3587 — bash

— 3587 -

3592 — bash

— 3592 -

12287 — /usr/bin/python /usr/bin/gm-notify

–12287 -

–12288 -

–12289 -

–12295 -

Приведенный в примере 8.2 вывод соответствует потокам, показанным в примере 8.1. Обратите внимание на то, что идентификаторы потоков для однопоточных процессов совпадают с идентификаторами процессов: это главные потоки. Для многопоточного процесса 12287 поток 12287 также является главным потоком.

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT