На этих семинарах были выработаны общий язык и общий набор интересов в области гидродинамики атмосферы и океанов. На них же родилась идея проведения летней школы для обучения аспирантов и молодых ученых. Осенью 1958 г. Джордж Веронис, Генри Стоммел и Виллем Малкус подготовили проект программы под названием «Теоретические исследования в геофизической гидродинамике». Джоан Малкус и Генри Стоммел были ее первыми консультантами, хотя Джоан перестала участвовать в ней после развода с Виллемом Малкусом, который продолжал активно сотрудничать с летней школой. Но Стоммел и Джоан Малкус олицетворяли собой дух этой геофизической дисциплины: оба стремились достичь физического понимания движения воздуха и воды, которое могло бы объяснить всю сложность мира самым простым из возможных способов.
В первой летней школе в Вудс-Хоуле, помимо сотрудников Океанографического института, приняли участие четыре аспиранта и шесть приглашенных лекторов. Вместо привычных лекций программа состояла в основном из семинаров, на которых исследователи рассказывали о своей текущей работе. Вопросы не просто разрешались, но и поощрялись, и упор делался не столько на предоставлении определенного набора знаний, сколько на совместном обсуждении молодыми и состоявшимися учеными актуальных исследовательских проблем. Стоммел и Алан Робинсон рассказали о своей недавно разработанной теории так называемого термоклина, или слоя воды, в котором происходит резкий скачок температуры. Джоан Малкус выступила с докладом по физике облаков. На семинарах царила атмосфера равенства. Выступления докладчиков можно было прерывать конструктивными комментариями и вопросами, и дух увлеченного научного поиска стирал все барьеры между студентами и преподавателями. Эта эгалитарная культура сохраняется и по сей день, когда летняя школа стоит на пороге своего 60-летнего юбилея.
Летние семинары по геофизической гидродинамике оказали огромное влияние на развитие нашего понимания того, как движутся океаны, льды и атмосфера. Но история науки о климате была в равной мере историей как упрощения, так и возрастания сложности. Каким бы важным достижением ни была схема Бретертона, она не могла соперничать по своей значимости с новым, куда более всеобъемлющим способом глобального видения, совмещавшим в себе простоту и сложность. Именно это глобальное видение – даже больше, чем завораживающее изображение голубого шара на фоне чернильно-черного космоса, – сформировало наше представление о климате Земли. Речь идет о моделях общей циркуляции – комплексных численных моделях, задача которых – воспроизвести динамику земной системы посредством расчета того, как сетка из многочисленных узлов реагирует на набор физических уравнений. Как и в борхесовском «достигшем совершенства» искусстве картографии, когда картографы сумели создать «карту Империи, имевшую размеры самой Империи и точно с нею совпадавшую», модели общей циркуляции стремятся охватить весь земной шар как можно более полно. Вместо бумаги при этом используются воображаемые сетки, разрешение которых повышается по мере увеличения доступной вычислительной мощности[377]. Время – еще один важный фактор в климатических моделях. Тогда как использование более широкого шага по времени позволило бы создать модели с гораздо более высоким пространственным разрешением, ученые, как правило, используют для расчета моделей временнóй интервал всего в 30 минут. Поскольку такие модели часто рассчитываются для столетних периодов и больше, это составляет 1 753 152 шага для каждой точки в сетке, для которой необходимо рассчитать серию так называемых параметров модели – значений температуры, скорости ветра, давления, влажности и т. д. Перемножение этих трех наборов чисел – количества шагов по времени, количества точек на сетке и количества параметров для каждой точки – дает колоссальный массив вычислений. Даже самые современные мощные компьютеры с трудом справляются с расчетом моделей общей циркуляции с самым высоким разрешением, используемых в настоящее время. Как правило, удвоение разрешения модели при расчете для столетнего периода увеличивает количество вычислений в десять раз[378]. Как прожорливые гиппопотамы, эти модели поглощают любой прирост вычислительной мощности, увеличивающейся в соответствии со знаменитым законом Мура.